PROOF THEORY FOR MODAL LOGICS	1. Hilbert-style Proof Theory
1. Hilbert-style proof theory	For modal logic K :
2. Soundness	Classical axioms: All (classical) tautologies.
3. Completeness	Modal axioms: All formulas of the form
4. Generalization to local premises	$\Box(P ightarrow Q) ightarrow (\Box P ightarrow \Box Q)$
5. Examples (T, S5 and KD45)	Modus Ponens Rule: $\frac{P, P \rightarrow Q}{Q}$
M. Fitting: <i>Basic Modal Logic</i> , 1.7 (pp. 387 – 391).	Necessitation Rule (N-rule): $\frac{P}{\Box P}$
\odot 2008 TKK, Department of Information and Computer Science	\odot 2008 TKK, Department of Information and Computer Science
© 2008 TKK, Department of Information and Computer Science T-79.5101 / Spring 2008 ML-5 2	© 2008 TKK, Department of Information and Computer Science T-79.5101 / Spring 2008 ML-5
	T-79.5101 / Spring 2008 ML-5
T-79.5101 / Spring 2008 ML-5 2	T-79.5101 / Spring 2008 ML-5 Derivation and Proof (We first consider the case without any local premises). Definition. A K-derivation of a formula P from a set of formulas Σ is
T-79.5101 / Spring 2008 ML-5 2 Proof Systems A proof system is a (syntactic) calculus to demonstrate that a given	T-79.5101 / Spring 2008 ML-5 Derivation and Proof (We first consider the case without any local premises).
T-79.5101 / Spring 2008 ML-5 2 Proof Systems A proof system is a (syntactic) calculus to demonstrate that a given formula is valid/a logical consequence from a set of formulas.	T-79.5101 / Spring 2008 ML-5 Derivation and Proof (We first consider the case without any local premises). Definition. A K-derivation of a formula P from a set of formulas Σ is a finite sequence of formulas ϕ_1, \ldots, ϕ_n such that $\phi_n = P$ and for all
T-79.5101 / Spring 2008 ML-5 2 Proof Systems A proof system is a (syntactic) calculus to demonstrate that a given formula is valid/a logical consequence from a set of formulas. A proof system gives a basis for developing automated reasoning	T-79.5101 / Spring 2008 ML-5 Derivation and Proof (We first consider the case without any local premises). Definition. A K-derivation of a formula P from a set of formulas Σ is a finite sequence of formulas ϕ_1, \ldots, ϕ_n such that $\phi_n = P$ and for all $i = 1, \ldots, n$
T-79.5101 / Spring 2008 ML-5 2 Proof Systems A proof system is a (syntactic) calculus to demonstrate that a given formula is valid/a logical consequence from a set of formulas. A proof system gives a basis for developing automated reasoning techniques.	T-79.5101 / Spring 2008 ML-5 $\begin{array}{c} \hline \\ \hline $
T-79.5101 / Spring 2008 ML-5 2 Proof Systems A proof system is a (syntactic) calculus to demonstrate that a given formula is valid/a logical consequence from a set of formulas. A proof system gives a basis for developing automated reasoning techniques. Possible proof systems:	 T-79.5101 / Spring 2008 ML-5 Derivation and Proof (We first consider the case without any local premises). Definition. A K-derivation of a formula P from a set of formulas Σ is a finite sequence of formulas φ₁,,φ_n such that φ_n = P and for all i = 1,,n φ_i ∈ Σ or φ_i is some axiom of K or φ_i is obtained by one of the rules Modus Ponens or Necessitation from earlier formulas in the sequence.
T-79.5101 / Spring 2008 ML-5 2 Proof Systems A proof system is a (syntactic) calculus to demonstrate that a given formula is valid/a logical consequence from a set of formulas. A proof system gives a basis for developing automated reasoning techniques. Possible proof systems: • Axiomatic (Hilbert-style) proof theory	T-79.5101 / Spring 2008 ML-5 $\begin{array}{c} \hline \\ \hline $
T-79.5101 / Spring 2008 ML-5 2 Proof Systems A proof system is a (syntactic) calculus to demonstrate that a given formula is valid/a logical consequence from a set of formulas. A proof system gives a basis for developing automated reasoning techniques. Possible proof systems: • Axiomatic (Hilbert-style) proof theory • Natural deduction	 T-79.5101 / Spring 2008 ML-5 Derivation and Proof (We first consider the case without any local premises). Definition. A K-derivation of a formula P from a set of formulas Σ is a finite sequence of formulas φ₁,,φ_n such that φ_n = P and for all i = 1,,n φ_i ∈ Σ or φ_i is some axiom of K or φ_i is obtained by one of the rules Modus Ponens or Necessitation from earlier formulas in the sequence.

© 2008 TKK, Department of Information and Computer Science

6

 $P \rightarrow Q$ $P \rightarrow Q$ (N, 1) $P \rightarrow Q$ (N, 2, 3) $Reneralized R-rule: \frac{P_1 \wedge \cdots \wedge P_n \rightarrow Q}{\Box P_1 \wedge \cdots \wedge \Box P_n \rightarrow \Box Q}$

Derived Rules (II)

Regularity Rule for
$$\diamond$$
 (R \diamond -rule): $\frac{P \rightarrow Q}{\diamond P \rightarrow \diamond Q}$

- 1. $P \rightarrow Q$ 2. $(P \rightarrow Q) \rightarrow (\neg Q \rightarrow \neg P)$ (Taut) 3. $\neg Q \rightarrow \neg P$ (MP, 1, 2) 4. $\Box \neg Q \rightarrow \Box \neg P$ (R, 3) 5. $(\Box \neg Q \rightarrow \Box \neg P) \rightarrow (\neg \Box \neg P \rightarrow \neg \Box \neg Q)$ (Taut) 6. $\neg \Box \neg P \rightarrow \neg \Box \neg Q$ (MP, 4, 5)
 - © 2008 TKK, Department of Information and Computer Science

T-79 5101 / Spring 2008 ML-5 8 2. Soundness The soundness of a proof system for a logic: If a formula is derivable in the proof system, it is also a logical consequence in the logic. **Theorem.** If a formula *P* has a **K**-derivation from a set of formulas Σ $(\Sigma \vdash_{\mathbf{K}} \emptyset \Longrightarrow P)$, then $\Sigma \models_{\mathbf{K}} \emptyset \Longrightarrow P$ (or in short: if $\Sigma \vdash_{\mathbf{K}} P$, then $\Sigma \models_{\mathbf{K}} P$). Proof. Let $\phi_1, \ldots, \phi_n (= P)$ be a **K**-derivation for a formula *P*. We show by induction that for all i = 1, ..., n, $\Sigma \models_{\mathbf{K}} \phi_i$ holds (i.e., ϕ_i is valid in every model where Σ is valid). So we prove by induction that for i = 1, ..., n, $\mathbf{C} \models \phi_i$ holds where $\mathbf{C} = \{ M \mid M \models \Sigma \}.$

Induction Proof

- (i = 1): If $\phi_1 \in \Sigma$, clearly $\mathbf{C} \models \phi_1$ holds (by the definition of the collection of models \mathbf{C}). If ϕ_1 is a classical tautology or of the form $\Box(P \rightarrow Q) \rightarrow (\Box P \rightarrow \Box Q)$, then $\mathbf{C} \models \phi_1$ holds for every collection of models \mathbf{C} by the basic theorem of the possible world semantic [ML-02].
- (i > 1): As above, if $\phi_i \in \Sigma$, is a classical tautology or of the form $\Box(P \to Q) \to (\Box P \to \Box Q)$, then $\mathbb{C} \models \phi_i$ holds.

If ϕ_i is derived from earlier formulas in the proof by MP- or N-rules, by the inductive hypothesis the earlier formulas are C-valid. As the set of C-valid formulas is closed under MP- and N-rules [basic theorem of the possible world semantic], $\mathbf{C} \models \phi_i$ holds.

Hence, for all i = 1, ..., n, ϕ_i is C-valid and thus $\Sigma \models_{\mathbf{K}} \phi_i$ holds. Hence, $\Sigma \models_{\mathbf{K}} P(=\phi_n)$ holds.

© 2008 TKK, Department of Information and Computer Science

T-79 5101 / Spring 2008

3. Completeness

ML-5

Completeness of a proof systems for a logic:

If a formula is a logical consequence in the logic, then there is a derivation of it in the proof system.

Theorem. If $\Sigma \models_{\mathbf{K}} P$, then $\Sigma \vdash_{\mathbf{K}} P$.

```
The outline of the proof: Let \Sigma \not\vdash_{\mathbf{K}} P hold.
```

We show that then also $\Sigma \not\models_{\mathbf{K}} P$ holds.

This is done by constructing a canonical model \mathcal{M} where all formulas in Σ are valid and for every Q such that $\Sigma \not\vdash_{\mathbf{K}} Q$ holds there is a world s in \mathcal{M} where $\mathcal{M}, s \mid \not\vdash Q$ holds.

The worlds of the model are maximally consistent sets of formulas that are constructed using Lindenbaum's lemma from the set of premises $\Sigma.$

T-79 5101 / Spring 2008

ML-5

(In)consistent Sets of Formulas

Definition. A finite set of formulas $\mathbf{A} = \{A_1, \dots, A_n\}$ is said Σ -inconsistent if $\Sigma \vdash_{\mathbf{K}} \neg (\top \land A_1 \land \dots \land A_n)$ holds.

Remark. The empty set is Σ -inconsistent if $\Sigma \vdash_{\mathbf{K}} \neg \top$ holds.

Definition. A set of formulas **A** is said Σ -consistent if none of its finite subsets is Σ -inconsistent.

As we assumed that the formula P has not **K**-derivation from Σ , the set $\{\neg P\}$ is Σ -consistent.

This holds because the only other subset of $\{\neg P\}$, the empty set \emptyset , is also Σ -consistent which can be shown as follows: Assume that \emptyset Σ -inconsistent, i.e., $\Sigma \vdash_{\mathbf{K}} \neg \top$ holds. Then $\Sigma \vdash_{\mathbf{K}} P$ holds as well because $\neg \top \rightarrow P$ is a tautology, a contradiction.

C 2008 TKK, Department of Information and Computer Science

ML-5

12

Important Lemmas

Lemma 1. If the set S is Σ -consistent, then each of its subsets $S' \subseteq S$ is Σ -consistent.

Proof. Assume that S has a subset S' which is not Σ -consistent. Then there is a Σ -inconsistent subset $A \subseteq S'$ but $A \subseteq S$ and, thus, S is not Σ -consistent, a contradiction.

Lemma 2. If a set of formulas **A** is Σ -consistent and $\neg \Box Z \in \mathbf{A}$, then $\mathbf{A}^{\#} \cup \{\neg Z\}$ is also Σ -consistent where $\mathbf{A}^{\#} = \{Q \mid \Box Q \in \mathbf{A}\}$.

Proof. Assume that $\mathbf{A}^{\#} \cup \{\neg Z\}$ is Σ -inconsistent.

Then there is a set $\{A_1, \ldots, A_n\} \subseteq \mathbf{A}^{\#}$ such that $\Sigma \vdash_{\mathbf{K}} \neg (\top \land A_1 \land \cdots \land A_n \land \neg Z)$ holds.

(as $\neg(\top \land A_1 \land \cdots \land A_n) \rightarrow \neg(\top \land A_1 \land \cdots \land A_n \land \neg Z)$ is a tautology).

Proof cont'd:

Proof cont d:			
1.	$\neg(\top \land A_1 \land \cdots \land A_n \land \neg Z)$		
2.	$\neg \top \lor \neg A_1 \lor \cdots \lor \neg A_n \lor Z$	(Prop,1)	
3.	$(\top \wedge A_1 \wedge \cdots \wedge A_n) \to Z$	(Prop,2)	
4.	$(\Box \top \land \Box A_1 \land \cdots \land \Box A_n) \to \Box Z$	(GR,3)	
5.	$\Box \top \to ((\Box A_1 \land \cdots \land \Box A_n) \to \Box Z)$	(Prop, 4)	
6.	$\top \to \Box \top$	(See. p. 5)	
7.	$\top \to ((\Box A_1 \land \cdots \land \Box A_n) \to \Box Z)$	(Prop, 5, 6)	
8.	$(\top \land \Box A_1 \land \cdots \land \Box A_n) \to \Box Z$	(Prop,7)	
9.	$\neg(\top \land \Box A_1 \land \cdots \land \Box A_n \land \neg \Box Z)$	(Prop, 8)	
\implies A is Σ -inconsistent (a contradiction). Hence, $\mathbf{A}^{\#} \cup \{\neg Z\}$			
Σ -consistent.			

© 2008 TKK, Department of Information and Computer Science

T-79.5101 / Spring 2008

ML-5

Lindenbaum's Lemma

Definition. Γ is maximally Σ -consistent if Γ is Σ -consistent and all supersets $\Gamma' \supset \Gamma$ are Σ -inconsistent.

Lemma 3. (Lindenbaum) Every Σ -consistent set of formulas can be extended to a maximally Σ -consistent one.

Proof. Let **A** be Σ -consistent. Enumerate all modal formulas in a sequence Q_0, Q_1, \ldots and define set $\Delta_0, \Delta_1, \ldots$ and Δ as follows:

$$\begin{split} \Delta_0 &= \mathbf{A}. \\ \Delta_i &= \begin{cases} \Delta_{i-1} \cup \{Q_{i-1}\} & \text{if } \Delta_{i-1} \cup \{Q_{i-1}\} \text{ } \Sigma\text{-consistent} \\ \Delta_{i-1} \cup \{\neg Q_{i-1}\} & \text{otherwise} \end{cases} \\ \Delta &= \bigcup_{i \geq 0} \Delta_i \end{split}$$

T-79 5101 / Spring 2008

We establish properties (i-iv) which imply the lemma.

(i) $\mathbf{A} \subseteq \Delta$

- (ii) for all i = 0, 1, ..., the set Δ_i is Σ -consistent.
 - Δ_0 is Σ -consistent.
 - Let Δ_{i-1} be Σ consistent.

Assume that Δ_i is Σ -inconsistent. Then $\Delta_i = \Delta_{i-1} \cup \{\neg Q_{i-1}\}$ and $\Delta_{i-1} \cup \{Q_{i-1}\}$ are Σ -inconsistent.

Hence, there is a set $\{A_1^+,\ldots,A_{n^+}^+\}\subseteq\Delta_{i-1}$ such that

$$\begin{split} \Sigma \vdash_{\mathbf{K}} \neg (\top \wedge A_{1}^{+} \wedge \cdots \wedge A_{n^{+}}^{+} \wedge Q_{i-1}) \\ \text{and a set } \{A_{1}^{-}, \dots, A_{n^{-}}^{-}\} \subseteq \Delta_{i-1} \text{ such that} \\ \Sigma \vdash_{\mathbf{K}} \neg (\top \wedge A_{1}^{-} \wedge \cdots \wedge A_{n^{-}}^{-} \wedge \neg Q_{i-1}). \end{split}$$

T-79 5101 / Spring 2008

ML-5

16

We can continue the derivations of the two formulas above:

 $\implies \Delta_{i-1}$ is Σ -inconsistent, a contradiction.

(iii) Δ is Σ -consistent.

[Lemma 1]

T-79.5101 / Spring 2008

3. Z

T-79 5101 / Spring 2008

ML-5

19

20

- For atomic propositions Q the claim holds by the definition of $\mathcal{M}.$
- For a formula of the form $\neg Q$: $\mathcal{M}, s \mid \models \neg Q$ iff $\mathcal{M}, s \mid \models Q$ iff [IH] $Q \notin s$ iff [Lemma 4 (ii)] $\neg Q \in s$.
- For a formula of the form $Q \to P$ the claim can be proved as above.
- For a formula of the form □Q: (⇐) Let □Q ∈ s hold. If sRt, then s[#] ⊆ t, Q ∈ t and M,t ||-Q [IH]. Thus, M,s ||- □Q.
 (⇒) Let □Q ∉ s hold. Then ¬□Q ∈ s [Lemma 4 (ii)]. Now t₀ = s[#] ∪ {¬Q} is Σ-consistent [Lemma 2] and t₀ has a maximally Σ-consistent extension t [Lemma 3 (Lindenbaum)]. So sRt because s[#] ⊆ t. As ¬Q ∈ t₀ ⊆ t, Q ∉ t holds [Lemma 4 (ii)]. Hence, M,t ||-Q [IH] and M,s ||-□Q.

© 2008 TKK, Department of Information and Computer Science

ML-5

T-79.5101 / Spring 2008

Completeness Proof—Summary

- Because Σ ⊆ s for all s ∈ S [Lemma 4 (i)], the set Σ is valid in the canonical model *M* [Lemma 5].
- As the set $\{\neg P\}$ is Σ -consistent, the set has a maximal Σ -consistent extension $t \in S$ [Lemma 3] and $P \notin t$ [Lemma 4 (ii)]. Thus, $\mathcal{M}, t \models P$ [Lemma 5].
- As Σ is valid in $\mathcal{M} = \langle S, R, v \rangle$ and there is a world $t \in S$ such that $\mathcal{M}, t \mid \not\vdash P$ holds, also $\Sigma \not\models_{\mathbf{K}} P$ holds.
- \implies Hilbert-style proof theory for the modal logic K is complete.

4. Generalization to Local Premises

Definition. $\Sigma \vdash_{\mathbf{K}} \Upsilon \Longrightarrow P$ means that there is a sequence of formulas ending with P consisting of a global part, coming first, and a local part, coming last.

In the global part every formula is

- an axiom of **K**, belongs to the set Σ or
- is obtained by one of the rules Modus Ponens or Necessitation from earlier formulas in the sequence.

In the local part every formula is

- an axiom of K, belongs to the set Υ or
- is obtained by the Modus Ponens rule from earlier formulas in the sequence.

C 2008 TKK. Department of Information and Computer Science

Properties of Derivations

- Derivations are finite.
- $\implies Compactness (\vdash):$ If $\Sigma \vdash_{\mathbf{K}} \Upsilon \implies P$ holds, then there are finite sets $\Sigma' \subseteq \Sigma$ and $\Upsilon' \subseteq \Upsilon$

such that $\Sigma' \vdash_{\mathbf{K}} \Upsilon' \Longrightarrow P$ holds.

• MP- and N-rules are monotonic:

 \implies *Monotonicity* (\vdash):

Let $\Sigma_1 \subseteq \Sigma_2$ and $\Upsilon_1 \subseteq \Upsilon_2$ hold. Then if $\Sigma_1 \vdash_{\mathbf{K}} \Upsilon_1 \Longrightarrow P$, then $\Sigma_2 \vdash_{\mathbf{K}} \Upsilon_2 \Longrightarrow P$.

• *Local deduction theorem* holds (⊢):

$$\Sigma \vdash_{\mathbf{K}} \Upsilon \cup \{Q\} \Longrightarrow P \text{ iff } \Sigma \vdash_{\mathbf{K}} \Upsilon \Longrightarrow Q \to P$$

 \odot 2008 TKK, Department of Information and Computer Science

T-79 5101 / Spring 2008 ML-5 Completeness **Theorem.** If $\Sigma \models_{\mathbf{K}} \Upsilon \Longrightarrow P$, then $\Sigma \vdash_{\mathbf{K}} \Upsilon \Longrightarrow P$. **Proof.** Let $\Sigma \models_{\mathbf{K}} \Upsilon \Longrightarrow P$ hold. • By compactness of \models : there are finite sets $\Sigma' \subseteq \Sigma$ and $\Upsilon' = \{\phi_1, \dots, \phi_n\} \subseteq \Upsilon$ such that $\Sigma' \models_{\mathbf{K}} \Upsilon' \Longrightarrow P$ holds.. • By the local deduction theorem for \models : $\Sigma' \models_{\mathbf{K}} \emptyset \Longrightarrow \phi_1 \to (\phi_2 \to \cdots \to (\phi_n \to P) \cdots).$ • By the completeness of K-derivations: $\Sigma' \vdash_{\mathbf{K}} \emptyset \Longrightarrow \phi_1 \to (\phi_2 \cdots \to (\phi_n \to P) \cdots)$ • By the local deduction theorem for \vdash : $\Sigma' \vdash_{\mathbf{K}} \Upsilon' \Longrightarrow P.$ • By monotonicity of ⊢: $\Sigma \vdash_{\mathbf{K}} \Upsilon \Longrightarrow P.$

```
T-79.5101 / Spring 2008
```

Soundness

Theorem. If $\Sigma \vdash_{\mathbf{K}} \Upsilon \Longrightarrow P$ holds, then $\Sigma \models_{\mathbf{K}} \Upsilon \Longrightarrow P$ holds.

Proof. Let $\Sigma \vdash_{\mathbf{K}} \Upsilon \Longrightarrow P$ hold.

- By compactness of \vdash : there are finite sets $\Sigma' \subseteq \Sigma$ and $\Upsilon' = \{\phi_1, \dots, \phi_n\} \subseteq \Upsilon$ such that $\Sigma' \vdash_{\mathbf{K}} \Upsilon' \Longrightarrow P$.
- By the local deduction theorem for \vdash : $\Sigma' \vdash_{\mathbf{K}} \emptyset \Longrightarrow \phi_1 \to (\phi_2 \to \cdots \to (\phi_n \to P) \cdots).$
- By the soundness of **K**-derivations: $\Sigma' \models_{\mathbf{K}} \emptyset \Longrightarrow \phi_1 \to (\phi_2 \cdots \to (\phi_n \to P) \cdots).$
- By the local deduction theorem for \models : $\Sigma' \models_{\mathbf{K}} \Upsilon' \Longrightarrow P.$
- By the monotonicity of \models : $\Sigma \models_{\mathbf{K}} \Upsilon \Longrightarrow P.$
 - © 2008 TKK, Department of Information and Computer Science

ML-5

T-79 5101 / Spring 2008

28

5. Examples of Hilbert-style Proof Systems

- Using the proof system for **K** and formulas characterizing properties of frames we can construct Hilbert-style proof systems for other frame logics.
- As the first example we consider the modal logic **T** where the frames are reflexive.
- The characteristic formula for reflexive frames: T: $\Box P \rightarrow P$.

Proposition. $\Sigma \models_{\mathbf{T}} \Upsilon \Longrightarrow P$ iff $\Sigma \cup \llbracket \mathbf{T} \rrbracket \models_{\mathbf{K}} \Upsilon \Longrightarrow P$

 \implies (Soundness and completeness of **K**-derivations)

Proposition. $\Sigma \models_{\mathbf{T}} \Upsilon \Longrightarrow P$ iff $\Sigma \cup \llbracket T \rrbracket \vdash_{\mathbf{K}} \Upsilon \Longrightarrow P$.

Modal Logic T

Hence, a sound and complete Hilbert-style proof system for the modal logic **T** is obtained as follows:

Classical axioms: All tautologies

Modal axioms: All formulas of the form

 $\mathsf{K}:\ \Box(P\to Q)\to (\Box P\to \Box Q)$

T: $\Box P \rightarrow P$

Modus Ponens -rule

N-rule

 \implies

```
Proposition. \Sigma \models_{\mathbf{T}} \Upsilon \Longrightarrow P iff \Sigma \vdash_{\mathbf{T}} \Upsilon \Longrightarrow P.
```

© 2008 TKK, Department of Information and Computer Science

ML-5

Modal Logic S5

T-79.5101 / Spring 2008

In a similar way for the frame logic S5 (equivalence frames):

Proposition. $\Sigma \models_{\mathbf{S5}} \Upsilon \Longrightarrow P$ iff $\Sigma \cup [\![T]\!] \cup [\![4]\!] \cup [\![B]\!] \vdash_{\mathbf{K}} \Upsilon \Longrightarrow P$ iff $\Sigma \cup [\![T]\!] \cup [\![4]\!] \cup [\![5]\!] \vdash_{\mathbf{K}} \Upsilon \Longrightarrow P$ iff $\Sigma \cup [\![T]\!] \cup [\![5]\!] \vdash_{\mathbf{K}} \Upsilon \Longrightarrow P$.

A Hilbert-style proof system for the modal logic ${\bf S5}$ (modal axioms need to extended):

Modal axioms: All formulas of the form

K: $\Box(P \to Q) \to (\Box P \to \Box Q)$ T: $\Box P \to P$ 4: $\Box P \to \Box \Box P$ 5: $\neg \Box P \to \Box \neg \Box P$

Proposition. $\Sigma \models_{\mathbf{S5}} \Upsilon \Longrightarrow P$ iff $\Sigma \vdash_{\mathbf{S5}} \Upsilon \Longrightarrow P$.

Modal Logic KD45

KD45 is the collection of serial, transitive and eudlidian frames.

Proposition. $\Sigma \models_{\mathbf{KD45}} \Upsilon \Longrightarrow P$ iff $\Sigma \cup \llbracket D \rrbracket \cup \llbracket 4 \rrbracket \cup \llbracket 5 \rrbracket \vdash_{\mathbf{K}} \Upsilon \Longrightarrow P$.

A Hilbert-style proof system for **KD45**:

Modal axioms: All formulas of the form

K:
$$\Box(P \to Q) \to (\Box P \to \Box Q)$$

D: $\Box P \to \Diamond P$
4: $\Box P \to \Box \Box P$
5: $\neg \Box P \to \Box \neg \Box P$

Proposition. $\Sigma \models_{\mathbf{KD45}} \Upsilon \Longrightarrow P$ iff $\Sigma \vdash_{\mathbf{KD45}} \Upsilon \Longrightarrow P$.

T-79 5101 / Spring 2008

ML-5

32

Summary

- A proof system of a logic is a syntactic calculus for showing that a formula is valid/a logical consequence from a set of formulas in the logic.
- For modal logics Hilbert-style axiomatic proof systems are common in the literature although they do not lend themselves well to automation.
- The two most important properties of a proof system are soundness and completeness.
- Typically soundness is quite straightforward to establish.
- For many frame logics completeness of Hilbert-style systems can be shown using the canonical model construction which is here demonstrated for the modal logic **K**.
- Using formulas characterizing properties of frames it is straightforward to construct Hilbert-style proof systems for many other frame logics.