T-79.5101 / Spring 2008 ML-4 1	T-79.5101 / Spring 2008 ML-4
EXAMPLE MODAL LOGICS	Substitution Instances
1. Frame logics	Definition. If Σ is a set of formulas, $[\![\Sigma]\!]$ is the set of all substitution instances of the members of Σ .
2. Modal logics K and T	• For example, if $\Sigma = \{P \rightarrow P\}$, then $[\![\Sigma]\!]$ contains, e.g., the formulas
3. Properties of frames	P o P, eg P o eg P, eg P o eg P, eg D o eg Q o eg Q o eg and
4. More examples of logics (K4, S4, KB, B, S5, D, D4, and DB)	$(\Box(P \to Q) \to (\Box P \to \Box Q)) \to (\Box(P \to Q) \to (\Box P \to \Box Q)).$
5. Logics of belief	 Sometimes we give names to formulas, for example,
6. Deduction theorem and compactness	I: $P \rightarrow P$
M. Fitting: <i>Basic Modal Logic</i> , 1.5 – 1.6 (pp. 384 – 387).	• Then the set of substitution instances of the formula I is denoted by [[I]], i.e., this is the set of formulas [[$\{P \rightarrow P\}$]].
© 2008 TKK, Department of Information and Computer Science T-79.5101 / Spring 2008 ML-4 2	© 2008 TKK, Department of Information and Computer Science T-79.5101 / Spring 2008 ML-4
1. Frame Logics The most well-known and frequently used modal logics are frame logics such that the set of valid formulas can be characterized by giving a collection L of frames $\langle S, R \rangle$ where the relation <i>R</i> satisfies chosen properties. We consider examples of such logics. Example. L could be the collection of reflexive frames $\langle S, R \rangle$ where <i>R</i> is reflexive ($\forall xR(x,x)$ holds). We have already shown that the set of L -valid formulas is a normal propositional modal logic L that 1. includes all tautologies; 2. includes <i>Q</i> whenever it includes <i>P</i> and $P \rightarrow Q$; 3. is closed under substitution; 4. includes all formulas of the form $\Box(P \rightarrow Q) \rightarrow (\Box P \rightarrow \Box Q)$; 5. includes $\Box P$ whenever it includes <i>P</i> .	 ↓ Content of the possible world semantics.

4

Modal Logic T

Let **T** be the collection of all reflexive frames.

- For example, if \Box is read as knowledge, reflexivity of the frames is reasonable: If the agent knows that *P*, then *P* is true.
 - Let $\langle S, R, v \rangle, s \mid\mid = \Box P$.
 - To guarantee that $\langle S, R, v \rangle, s \mid \mid -P$ holds it is sufficient that R is reflexive:

If $\langle S, R, v \rangle, s \mid \mid = \Box P$ holds, then for every $t \in S$, such that sRt,

 $\langle S, R, v \rangle, t \mid \mid = P$ holds.

When R is reflexive, sRs and $\langle S, R, v \rangle$, s || - P holds.

C 2008 TKK, Department of Information and Computer Science

M L-4

Modal Logic T

T-79 5101 / Spring 2008

A characteristic formula for modal logic T

T: $\Box P \rightarrow P$

is valid in a frame $\langle S, R \rangle$ iff R is reflexive (as we showed in Lecture ML-03).

 \implies **T** = **K** + [[**T**]]

Proposition. $\Sigma \models_{\mathbf{T}} \Upsilon \Longrightarrow P$ iff $\Sigma \cup \llbracket \mathbf{T} \rrbracket \models_{\mathbf{K}} \Upsilon \Longrightarrow P$.

Proof. (\Leftarrow) Let $\Sigma \cup \llbracket T \rrbracket \models_{\mathbf{K}} \Upsilon \Longrightarrow P$ hold.

Because $\mathbf{T} \subseteq \mathbf{K}$, then also $\Sigma \cup \llbracket \mathbf{T} \rrbracket \models_{\mathbf{T}} \Upsilon \Longrightarrow P$ holds.

Every member of $[\![T]\!]$ is T-valid as T is the collection of reflexive frames (See ML-03).

Hence, $\Sigma \models_{\mathbf{T}} \Upsilon \Longrightarrow P$ holds.

Proof (cont'd)

 (\Longrightarrow) Assume $\Sigma \cup \llbracket T \rrbracket \not\models_{\mathbf{K}} \Upsilon \Longrightarrow P$.

Then there is a model $\mathcal{M} = \langle S, R, v \rangle$ based on a frame $\langle S, R \rangle$ such that all formulas in $\Sigma \cup [[T]]$ are valid in the model and there is a world *s* in the model where $\langle S, R, v \rangle, s \mid |-\Upsilon \cup \{\neg P\}$ holds.

Let $R^* = R \cup \{(s,s) \mid s \in S\}$. We show that for every formula U for every world $s \in S$: $\langle S, R, v \rangle, s \mid \mid = U$ iff $\langle S, R^*, v \rangle, s \mid \mid = U$ by induction on the structure of the formula U:

- U is an atomic proposition Q: $\langle S, R, v \rangle, s \mid \mid = Q$ iff $\langle S, R^*, v \rangle, s \mid \mid = Q$.
- U is of the form $\neg Q$:

 $\langle S, R, \nu \rangle, s \mid \mid -\neg Q$ iff $\langle S, R, \nu \rangle, s \mid \not\vdash Q$ iff (by the inductive hypothesis) $\langle S, R^*, \nu \rangle, s \mid \mid \not\vdash Q$ iff $\langle S, R^*, \nu \rangle, s \mid \mid -\neg Q$.

```
\textcircled{C} 2008 TKK. Department of Information and Computer Science
```

```
T-79 5101 / Spring 2008
                                                                 ML-4
                                                                                                                               8
   • U is of the form Q \rightarrow Q' (can be shown as the case \neg Q).
   • U is of the form \Box O:
       (\Leftarrow) If (S, R, v), s \mid \not\vdash \Box Q holds, there is a world t such that sRt
       and (S, R, v), t \mid \not\vdash Q. By the inductive hypothesis (S, R^*, v), t \mid \not\vdash Q.
       Now sR^*t and \langle S, R^*, v \rangle, s \mid \not \models \Box Q holds.
       (\Rightarrow) If (S, R^*, v), s \mid \not\vdash \Box Q, then there is a world t such that sR^*t
       and \langle S, R^*, v \rangle, t \mid \not\vdash Q
       1. If t \neq s, then sRt and \langle S, R, v \rangle, s \mid \not\vdash \Box Q.
       2. If t = s, then \langle S, R^*, v \rangle, s \mid \not\vdash Q and \langle S, R, v \rangle, s \mid \not\vdash Q
           by the inductive hypothesis.
           As \Box Q \rightarrow Q is valid in the model \langle S, R, v \rangle, \langle S, R, v \rangle, s \models \Box Q holds.
Hence, \langle S, R^*, v \rangle \models \Sigma and \langle S, R^*, v \rangle, s \mid \mid - \Upsilon \cup \{\neg P\}.
Hence, \Sigma \not\models_{\mathbf{T}} \Upsilon \Longrightarrow P holds, since \langle S, R^* \rangle is a reflexive frame.
```

Some properties of frames and corresponding modal formulas:

1. Reflexive:	
$\forall s(sRs)$	$\Box A \rightarrow A$
2. Symmetric:	
$\forall s \forall t (sRt \rightarrow tRs)$	$A ightarrow \Box \diamondsuit A$
3. Serial:	
$\forall s \exists t (sRt)$	$\Box A \rightarrow \Diamond A$
4. Transitive:	
$\forall s \forall t \forall u (sRt \wedge tRu \rightarrow sRu)$	$\Box A \to \Box \Box A$
5. Euclidean:	
$\forall s \forall t \forall u (sRt \wedge sRu \rightarrow tRu)$	$\neg \Box A \rightarrow \Box \neg \Box A$

© 2008 TKK, Department of Information and Computer Science

Properties of Frames—cont'd	
6. Partially functional:	
$\forall s \forall t \forall u (sRt \wedge sRu \rightarrow t = u)$	$\Diamond A \to \Box A$
7. Functional:	
$\forall s \exists ! t(sRt)$	$\Diamond A \leftrightarrow \Box A$
8. Weakly dense:	
$\forall s \forall t (sRt \rightarrow \exists u (sRu \wedge uRt))$	$\Box\Box A ightarrow \Box A$
9. Weakly connected:	
$\forall s \forall t \forall u (sRt \land sRu \rightarrow$	$\Box(A \wedge \Box A o B) \lor$
$tRu \vee t = u \vee uRt)$	$\Box(B \land \Box B \to A)$
10. Weakly directed:	
$\forall s \forall t \forall u (sRt \wedge sRu \rightarrow \exists v (tRv \wedge uRv))$	$\Diamond \Box A \to \Box \Diamond A$

9

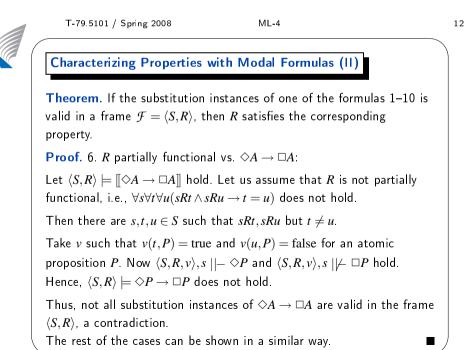
10

Theorem. Let $\mathcal{F} = \langle S, R \rangle$ be a frame. Then for each of the properties 1–10, if *R* satisfies the property, then every substitution instance of the corresponding formula is valid in \mathcal{F} .

Proof. 2. Let *R* be symmetric. We show that $\langle S, R \rangle \models [\![A \to \Box \Diamond A]\!]$. Assume that there is a substitution instance $A \to \Box \Diamond A$, for which $\langle S, R \rangle \not\models A \to \Box \Diamond A$. Then there is a model $\mathcal{M} = \langle S, R, v \rangle$ and a world $s \in S$ where $\mathcal{M}, s \mid \mid -A$ and $\mathcal{M}, s \mid \mid -\Box \Diamond A$. Hence, there is a world *t* such that *sRt* and $\mathcal{M}, t \mid \mid - \Diamond A$. Thus, for all *t'* such that *tRt'*, $\mathcal{M}, t' \mid \mid -A$ holds. As *R* is symmetric, *tRs* and $\mathcal{M}, s \mid \mid -A$ holds, a contradiction. Hence, the assumption does not hold and $\langle S, R \rangle \models [\![A \to \Box \Diamond A]\!]$ holds.

Cases 3–10 can be proved in a similar way.

C 2008 TKK, Department of Information and Computer Science



Modal logic K4

- Let K4 be the collection of transitive frames.
- A characteristic formula (positive introspection):

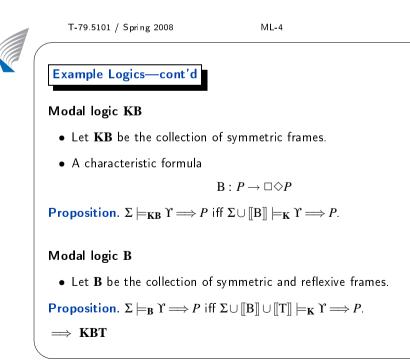
 $4: \Box P \to \Box \Box P$

Proposition. $\Sigma \models_{\mathbf{K4}} \Upsilon \Longrightarrow P$ iff $\Sigma \cup \llbracket 4 \rrbracket \models_{\mathbf{K}} \Upsilon \Longrightarrow P$.

Modal logic S4

• Let S4 be the collection of transitive and reflexive frames.

Proposition. $\Sigma \models_{\mathbf{S4}} \Upsilon \Longrightarrow P$ iff $\Sigma \cup \llbracket 4 \rrbracket \cup \llbracket T \rrbracket \models_{\mathbf{K}} \Upsilon \Longrightarrow P$.



Modal Logic S5

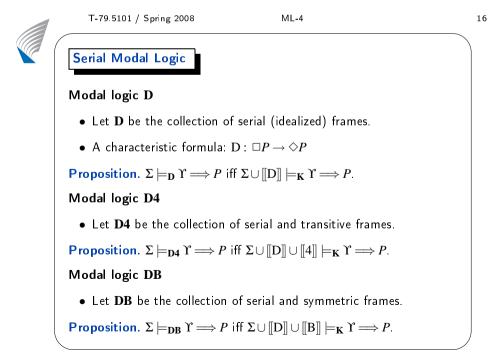
- Let **S5** be the collection of equivalent frames (symmetric, reflexive and transitive).
- A characteristic formula (negative introspection):

$$5: \neg \Box P \rightarrow \Box \neg \Box P$$

Proposition.

$$\begin{split} \Sigma \models_{\mathbf{S5}} \Upsilon &\Longrightarrow P \text{ iff} \\ \Sigma \cup \llbracket T \rrbracket \cup \llbracket 4 \rrbracket \cup \llbracket B \rrbracket \models_{\mathbf{K}} \Upsilon &\Longrightarrow P \text{ iff} \\ \Sigma \cup \llbracket T \rrbracket \cup \llbracket 4 \rrbracket \cup \llbracket 5 \rrbracket \models_{\mathbf{K}} \Upsilon &\Longrightarrow P \text{ iff} \\ \Sigma \cup \llbracket T \rrbracket \cup \llbracket 5 \rrbracket \models_{\mathbf{K}} \Upsilon &\Longrightarrow P \text{ iff} \\ \end{split}$$

© 2008 TKK, Department of Information and Computer Science

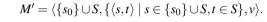


Simpler Collections of Frames for S5 and KD45

• For modal logic **S5** it is enough to consider only universal frames, i.e., frames $\langle S, R \rangle$ where $R = \{ \langle s, t \rangle \mid s, t \in S \}$.

Proposition. If a formula *P* is true in a model bases on a S5-frame. then P is true in a model based on a universal frame.

Proposition. If a formula P is true in a model based on a **KD45**-frame, then P is true in a model M' of the form



(c) 2008 TKK, Department of Information and Computer Science

T-79.5101 / Spring 2008 ML-4 6. Deduction Theorem and Compactness • For all logics considered above the global deduction theorem holds: $\Sigma \cup \{Q\} \models_{\mathbf{L}} \Upsilon \Longrightarrow P$ iff for some *n* it holds that $\Sigma \models_{\mathbf{L}} \Upsilon \cup \{ \Box^0 Q, \Box^1 Q, \dots, \Box^n Q \} \Longrightarrow P$. • In addition the logics are compact: If $\Sigma \models_{\mathbf{L}} \Upsilon \Longrightarrow P$, then there are finite subsets $\Sigma_0 \subseteq \Sigma$ and $\Upsilon_0 \subseteq \Upsilon$ such that $\Sigma_0 \models_{\mathbf{L}} \Upsilon_0 \Longrightarrow P$. • However, not all modal logics (or even frame logics have these properties.

5. Logics of Belief

- What is believed might not be true and, hence, in a logic of beliefs the frames are not necessarily reflexive.
- If we adopt positive and negative introspection, then we obtain modal logic K45.
- But $\neg \Box \bot$ is not **K45**-valid: $\langle \{s\}, \emptyset, v \rangle, s \mid \mid = \Box \bot$.
- If we also assume serial frames, then we arrive at modal logic KD45 (serial, transitive and euclidean frames).

Remark. Transitivity is not redundant: $\Box P \rightarrow \Box \Box P$ is not valid in serial and euclidean frames (KD5-valid).

© 2008 TKK, Department of Information and Computer Science

T-79 5101 / Spring 2008 Logics of Belief

ML-4

- Formula $\neg \Box \bot$ is **KD45**-valid (since the frames are serial).
- Formula $\Box P \rightarrow P$ is not **KD45**-valid.
- Formula $\Box(\Box P \rightarrow P)$ is **KD45**-valid.

Proof. Let $\langle S, R \rangle$ be a **KD45**-frame.

Let $s \in S$ and sRt (such a world $t \in S$ always exists in a **KD45**-frame).

As the frame is euclidean: tRt holds (as sRt and sRt).

Hence, for all t such that sRt holds, also tRt holds.

Hence, $\langle S, R, v \rangle$, $s \parallel = \Box (\Box P \rightarrow P)$,

because for every t such that sRt, $\langle S, R, v \rangle$, $t \mid \mid = \Box P \rightarrow P$.

20

Modal Logic GL

- Let **GL** be the collection of transitive, irreflexive and finite frames (or the collection of transitive frames where there is no infinite sequence of worlds with each accessible from its predecessor.
- This does not correspond to any formula in (first-order) predicate logic expressing the properties of the frame.
- A characteristic formula

T-79.5101 / Spring 2008

$$\mathrm{GL}:\,\Box(\Box P\to P)\to\Box P$$

• Global deduction theorem does not hold and GL is not compact.

Proposition. If Σ and Υ are finite sets of formulas, then $\Sigma \models_{\mathbf{GL}} \Upsilon \Longrightarrow P$ iff $\Sigma \cup \llbracket \mathbf{GL} \rrbracket \models_{\mathbf{K}} \Upsilon \Longrightarrow P$.

© 2008 TKK, Department of Information and Computer Science

ML-4

22

Summary

- The most well-known and frequently used modal logics are all frame logics.
- Interesting properties of frames can be expressed using characterizing modal formulas.
- Logical consequence in many frame logics can be captured by adding the characterizing modal formulas for the properties of the frames as global premises.
- This leads to natural Hilbert-style proof systems for these logics (as will be shown in the next lecture).