PROPOSITIONAL MODAL LOGICS

- 1. Basic concepts and definitions
- 2. Possible world semantics
- 3. Basic properties of the possible world semantics
- M. Fitting: *Basic Modal Logic*, Sections 1.1 1.2 (p. 372 377).

© 2008 TKK. Department of Information and Computer Science

T-79 5101 / Spring 2008

ML-2

1. Basic Concepts and Definitions

- We consider first propositional modal logics which have one modal operator □ and its dual operator ◊ (¬□¬).
- The operator can be given many alternative interpretations:

Syntax of Modal Logic

- Let $\Phi = \{p_1, p_2, \ldots\}$ be a set of (atomic) propositions.
- The class of *propositional modal formulas* is defined as follows:
- 1. Every atomic proposition is a *formula*.
- 2. \top and \perp are *formulas*.
- 3. If P and Q are formulas, then $\neg P$, $(P \rightarrow Q)$, $\Box P$ are *formulas*.
- 4. There are no other formulas.

Note the usual abbreviations:

$$\begin{split} &\diamond P \equiv_{\mathrm{def}} \neg \Box \neg P & P \lor Q \equiv_{\mathrm{def}} \neg P \to Q \\ &P \land Q \equiv_{\mathrm{def}} \neg (P \to \neg Q) & P \leftrightarrow Q \equiv_{\mathrm{def}} \neg ((P \to Q) \to \neg (Q \to P)) \end{split}$$

^{© 2008} TKK, Department of Information and Computer Science

ML-2

4

Tautologies

Definition. If a formula Q results from formula P by replacing the atomic propositions of P uniformly by formulas, we say that Q results from P by substitution.

A formula that results by substitution from a tautology in propositional logic is called a classical tautology.

Example. Formula

$$(\Box \Box P \to (R \to \Box S)) \to (\Box \Box P \to (R \to \Box S))$$

is a classical tautology which results from a propositional tautology $P \rightarrow P$ by substituting proposition P by formula $(\Box \Box P \rightarrow (R \rightarrow \Box S))$.

Tautologies—cont'd

Classical tautologies can be identified using propositional tableaux as follows: Construct a semantical tableau for the negation of the formula by treating subformulas of the form $\Box P$ as atomic (no tableau rule is applied to them).

If the tableau closes, the formula is a classical tautology.

Example. Consider a formula	1.	$\neg((\Box\neg\Box(P\rightarrow Q)\land\Box(\neg P\land\neg Q))\rightarrow$	
$(\Box\neg\Box(P\rightarrow Q)\wedge\Box(\neg P\wedge\neg Q))\rightarrow$		$(\Box\neg\Box(P\rightarrow Q)\lor\Box(\neg P\wedge\neg Q)))$	
$(\Box\neg\Box(P\rightarrow Q)\lor\Box(\neg P\wedge\neg Q))$	2.	$\Box \neg \Box (P \to Q) \land \Box (\neg P \land \neg Q)$	(1)
As the tableau (on the right)	3.	$\neg(\Box\neg\Box(P\to Q)\lor\Box(\neg P\wedge\neg Q))$	(1)
closes, the formula is a classical	4.	$\Box \neg \Box (P \rightarrow Q)$	(2)
tautology.	5.	$\Box(\neg P \land \neg Q)$	(2)
	6.	$\neg \Box \neg \Box (P \to Q)$	(3)
	7.	$\neg\Box(\neg P \land \neg Q)$	(3)
		×	

© 2008 TKK, Department of Information and Computer Science

ML-2

Logic = A Set of Valid Formulas

T-79 5101 / Spring 2008

Definition. Propositional modal logic \mathcal{L} is a set of propositional modal formulas such that

- 1. all (classical) tautologies are in \mathcal{L} ;
- 2. *L* is closed under modus ponens

(if $P \in \mathcal{L}$ and $P \rightarrow Q \in \mathcal{L}$, then $Q \in \mathcal{L}$);

3. \mathcal{L} closed under substitution:

(if $P \in \mathcal{L}$ and Q results from P by substitution, then $Q \in \mathcal{L}$).

Example. (1) The set of classical tautologies is a propositional modal logic.

(2) The set of all propositional modal formulas is a propositional modal logic.

2. Possible World Semantics

Definition. A *frame* is a pair $\mathcal{F} = \langle S, R \rangle$, where S is a non-empty set and R is a binary relation on S ($R \subseteq S \times S$).

The members of S are called *possible worlds* and R is the accessibility relation between worlds: for worlds s_1 and s_2 , if $(s_1, s_2) \in R$ (often denoted by s_1Rs_2), then s_2 is said to be accessible from s_1 .

Definition. A *valuation* in a frame $\langle S, R \rangle$ is a function v mapping possible worlds and propositions to truth values: for all $s \in S$ and propositions P, v(s,P) is either true or false.

(Alternatively: a valuation $v: S \to 2^{\Phi}$ is a function such that v(s) is the set of propositions true in the world s.)

Definition. A *model* is a triple $\mathcal{M} = \langle S, R, v \rangle$ where $\langle S, R \rangle$ is a frame and v a valuation in this frame. A model $\mathcal{M} = \langle S, R, v \rangle$ is based on the frame $\langle S, R \rangle$.

© 2008 TKK, Department of Information and Computer Science

ML-2

8

Truth in a Model

Relation $\mathcal{M}, s \mid\mid = P$ (often denoted also by $\mathcal{M}, s \models P$), tells whether formula P is true in the possible world s of the model \mathcal{M} and it is defined as follows:

Definition. Let $\mathcal{M} = \langle S, R, v \rangle$ be a model.

1. $\mathcal{M}, s \mid\mid -P$ iff v(s, P) =true, when P is an atomic proposition.

2. $\mathcal{M}, s \mid \not\vdash \bot$ and $\mathcal{M}, s \mid \mid = \top$.

3. $\mathcal{M}, s \mid\mid = \neg P$ iff $\mathcal{M}, s \mid\mid \neq P$.

4. $\mathcal{M}, s \mid\mid = P \rightarrow Q$ iff $\mathcal{M}, s \mid\mid \neq P$ or $\mathcal{M}, s \mid\mid = Q$.

5. $\mathcal{M}, s \mid\mid = \Box P$ iff $\mathcal{M}, t \mid\mid = P$ for every $t \in S$ such that sRt.

Note: $\mathcal{M}, s \mid \mid - \Diamond P$ iff $\mathcal{M}, t \mid \mid - P$ for some $t \in S$ such that sRt.

Proof. (1.) Consider an arbitrary classical tautology. It is true in every world of every model. Hence, it is C-valid.

(2.) Let $\mathcal{M} = \langle S, R, v \rangle$ be a model in C and s a world in S. Assume that there is a formula of the form $\Box(P \to Q) \to (\Box P \to \Box Q)$ which is not true in s. Then

(i) $\mathcal{M}, s \mid\mid = \Box(P \rightarrow Q)$ and

(ii) $\mathcal{M}, s \mid\mid = \Box P$ but

(iii) $\mathcal{M}, s \models \Box Q$.

By (iii) there is a world $t \in S$ such that sRt and $\mathcal{M}, t \mid \not\vdash Q$. But then

 $\mathcal{M},t\mid\mid = P \rightarrow Q$ and $\mathcal{M},t\mid\mid = P$ by (i & ii). Hence, $\mathcal{M},t\mid\mid = Q$, a contradiction.

Thus, every formula of the form $\Box(P \to Q) \to (\Box P \to \Box Q)$ is true in any world *s* and, hence, **C**-valid.

 \odot 2008 TKK, Department of Information and Computer Science

ML-2

Proof. (cont'd).

T-79.5101 / Spring 2008

(3.) Let P and $P \rightarrow O$ be C-valid.

Let $\mathcal{M} = \langle S, R, v \rangle$ be a model in **C** and *s* a world in *S*.

Then P and $P \rightarrow Q$ are true in the world s and, thus, Q is true in s. Hence, Q is true in every world in each model in \mathbb{C} which implies that Q is \mathbb{C} -valid.

(4.) Let P be C-valid.

Let $\mathcal{M} = \langle S, R, v \rangle$ by a model in \mathbf{C} and s a world in S.

The for each world $t \in S$ such that sRt, $\mathcal{M}, t \mid \mid -P$ and $\mathcal{M}, s \mid \mid -\square P$. Thus, $\square P$ is C-valid.

Proof. (cont'd).

Let ${\bf F}$ is a non-empty collection of frames. We show that the set of ${\bf F}\text{-valid}$ formulas is closed under substitution, that is,

if X is **F**-valid, then the formula $\sigma(X)$ is **F**-valid

where $\sigma(X)$ results from X by a substitution σ , in which each proposition P in X is replaced uniformly by the formula $\sigma(P)$.

We establish the result by showing that if $\sigma(X)$ is not **F**-valid, then X is not **F**-valid.

Assume $\sigma(X)$ is not **F**-valid, then there is a frame $\langle S, R \rangle \in \mathbf{F}$, valuation ν and a world $t \in S$ such that $\mathcal{M}, t \mid \not \vdash \sigma(X)$ where $\mathcal{M} = \langle S, R, \nu \rangle$.

C 2008 TKK. Department of Information and Computer Science

T-79 5101 / Spring 2008

ML-2

16

Proof. (cont'd).

Let $\mathcal{M}' = \langle S, R, v' \rangle$ where v'(P, s) = true iff $\mathcal{M}, s \mid \mid -\sigma(P)$ for atomic propositions P.

We show by structural induction for every formula Z, that for each world $s \in S$ it holds that $\mathcal{M}', s \mid \mid Z$ iff $\mathcal{M}, s \mid \mid = \sigma(Z)$.

- If Z is an atomic proposition, then $\mathcal{M}', s \mid \mid -Z$ iff v'(Z, s) = true iff $\mathcal{M}, s \mid \mid -\sigma(Z)$.
- If Z is of the form \top or \bot , then $\mathcal{M}', s \mid \mid -Z$ iff $\mathcal{M}, s \mid \mid -\sigma(Z)$.
- If Z is of the form $\neg Z'$, then $\mathcal{M}', s \mid \mid -\neg Z'$ iff $\mathcal{M}', s \mid \not \vdash Z'$. By the inductive hypothesis this hold exactly when $\mathcal{M}, s \mid \not \vdash \sigma(Z')$ which holds iff $\mathcal{M}, s \mid \mid -\neg \sigma(Z') [= \sigma(\neg Z')]$.

Summary

- The language of propositional modal formulas with one modal operator (□) is introduced and the notion of classical tautologies is defined.
- Different modal logics in this language are identified by the valid formulas in the logic.
- The possible world semantics for modal formulas is introduced and key concepts are presented: truth in a model and validity.
- Some basic properties of the possible world semantics are proved. The notion of structural induction is illustrated through an example use of it in one of the proofs.
- The notion of normal modal logics is introduced.

© 2008 TKK, Department of Information and Computer Science

Proof. (cont'd).

- If Z is of the form $Z' \to Z''$, then $\mathcal{M}', s \mid \mid -Z' \to Z''$ iff $\mathcal{M}', s \mid \mid -Z'$ or $\mathcal{M}', s \mid \mid -Z''$ iff $\mathcal{M}, s \mid \mid -\sigma(Z')$ or $\mathcal{M}, s \mid \mid -\sigma(Z'')$ [IH] iff $\mathcal{M}, s \mid \mid -\sigma(Z') \to \sigma(Z'') [= \sigma(Z' \to Z'')].$
- If Z is of the form □Z', then M', s ||- □Z' iff for all t ∈ S such that sRt it holds that M', t ||- Z' iff for all t ∈ S such that sRt it holds that M, t ||- σ(Z') [IH] iff M, s ||- □σ(Z')[=σ(□Z')].

Hence, if $\mathcal{M}, t \mid \not\vdash \sigma(X)$, then $\mathcal{M}', t \mid \not\vdash X$. This implies that X is not **F**-valid.

© 2008 TKK, Department of Information and Computer Science

ML-2

T-79.5101 / Spring 2008

Normal Modal Logics

Corollary. If \mathbf{L} is a non-empty set of frames, then the set of \mathbf{L} -valid formulas is a propositional modal logic.

From now on we use the notation ${\bf L}$ in a double way: ${\bf L}$ can refer to

(1) a collection of frames or

(2) the set of formulas that are valid in \mathbf{L} .

Definition. Propositional modal logic is called normal if it includes (i) all formulas of the form $\Box(P \rightarrow Q) \rightarrow (\Box P \rightarrow \Box Q)$ and (ii) the formula $\Box P$ whenever P is included.

Definition. A set of formulas \mathcal{L} is called a *frame logic* is \mathcal{L} is the set of **L**-valid formulas for some non-empty collection of frames **L**.

We use ${\bf L}$ to denote a logic and the corresponding collection of frames.

,