T-79.5101

Advanced Course in Computational Logic (4 cr) L

Spring 2008

Course Content

- Modal logics
 - syntax
 - semantics
 - proof methods
- Applications of temporal logic in concurrent and distributed systems.
- Recurring concepts in computer science:
 - formal model
 - consistency and completeness
 - efficiency; computational complexity of problems

Practicalities

Prerequisites: T-79.3001/144 Logic in computer science: foundations (or corresponding knowledge)

Lectures: Tuesdays 10–12, TB353
Lecturer: Prof. Ilkka Niemelä, TB337, pul. 451 3290, e-mail: Ilkka.Niemela@tkk.fi.
Tutorials: Mondays 15–16, TB353
Assistant: Lic.Sc. (Tech) Matti Järvisalo, TB354, pul. 451 2896, e-mail: mj@tcs.tkk.fi.
Homepage: http://www.tcs.tkk.fi/Studies/T-79.5101/
New group: opinnot.tik.logiikka
email: t795101@tcs.tkk.fi

Material

- Lectures (see slides on the course home page)
Passing the Course

- In order to pass the course one has to
 - pass compulsory home assignments (3 sets) and
 - pass the final exam (with a grade greater than 0).
- Course grade: the grade of the final exam
- You can earn at most 4 bonus points for the exam (maximum points in exam 50):
 - Attendance in tutorials (at most 3 p.):
 - attending at least 4 times / 1 p.
 - attending at least 8 times / 2 p.
 - attending at least 11 times / 3 p.
 - Filling out the feedback form (1 p.)

Modal Logic in Computer Science

- Modal logic is the logic of concepts such as necessary, obligatory, known, believed, true in the future, provable, ...
- Specification, analysis, verification of systems distributed and concurrent systems, reactive systems, protocols, security ...
- Knowledge representation, natural language processing, software agents, semantic web, ontologies, ...

Logic in Computer Science

- Formal methods are gaining popularity
- Logic-based tools widely used

> The use of formal verification tools is well established and becoming more so. Simulation- and emulation-based methodologies aren't sufficient to guarantee correctness with today's complex chips.

(Carl Pixley, Motorola Inc. in IEEE Spectrum, Jan 1997, p. 61)

- This is due to a number of factors
 - The performance and memory capacity of computers are rapidly increasing
 - Algorithms and implementation techniques for logic-based methods and tools have advanced dramatically

Challenges in System Design

- System specification and design error prone activities
- Early mistakes very expensive to repair.
- Need for more formal, mathematical methods.
 - “One should take a small portion of every dish”
 - “Define small”
Distributed and Concurrent Systems

- Several distributed and concurrent processes
- Shared resources, process coordination, communication
- Unending operation cycle
- Examples: operating systems, communication protocols, device drivers, instrumentation and control systems, ...
- Designing such systems very challenging and new methods and tools are needed.

Example—cont’d.

Temporal logic provides a suitable framework.

- □P: always (in the future) P.
- ◇P: sometimes (in the future) P.

(i) □□ex
(ii) □en → □◇ex
(iii) □◇en → □◇ex

How can temporal logic used in system design

1. Model checking: Is a given property true in a model?
2. Satisfiability: Are there models satisfying given properties?
3. Validity: Do all models satisfy given conditions?

Example. (Fairness)

How to express precisely and to verify properties such as:

(i) Every process is executed infinitely often
(ii) Every process that is constantly ready to be scheduled is executed infinitely often
(iii) Every process that is infinitely often ready to be scheduled is executed infinitely often

Needed: a model describing the behavior of the system and a language for expressing properties of the system.

Example—cont’d.

(i) □◇ex ?
(ii) □en → □◇ex ?
(iii) □◇en → □◇ex ?