RSA Cryptosystem

\[n = pq \] where \(p \) and \(q \) are two different large primes

\[\phi(n) = (p-1)(q-1) \]

\(a \) decryption exponent (private)

\(b \) encryption exponent (public)

\[ab \equiv 1 \pmod{\phi(n)} \]

RSA operation:

\[(m^b)^a \equiv m \pmod{n} \]

for all \(m, \, 0 \leq m < n \).

Wiener’s result: It is insecure to select \(a \) shorter than about \(\frac{1}{4} \) of the length of \(n \).

Wiener’s method is based on continued fractions.

RSA Equation

\[ab - k \phi(n) = 1 \]

for some \(k \) where only \(b \) is known.

Additional information: \(pq = n \) is known and \(q < p < 2q \)

\[n > \phi(n) = (p-1)(q-1) = pq - p - q + 1 \geq n - 3\sqrt{n} \]

Also we know that \(a, b < \phi(n) \), hence \(k < a \).

Wiener (1989) showed how to exploit this information to solve for \(a \) and all other parameters \(k, p \) and \(q \), if \(a \) is sufficiently small.

Wiener’s method is based on continued fractions.
Continued Fractions

Every rational number t has a unique representation as a finite chain of fractions

$$t = \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{q_3 + \frac{1}{\cdots + \frac{1}{q_{m-1} + \frac{1}{q_m}}}}}}$$

and we denote $t = [q_1, q_2, q_3, \ldots, q_{m-1}, q_m]$. The rational number $t_j = [q_1, q_2, q_3, \ldots, q_j]$ is called the jth convergent of t. For $t = u/v$, just run the Euclidean algorithm to find the q_i, $i = 1, 2, \ldots, m$.

Fundamental Lemma

Theorem 5.14 Suppose that $\gcd(u,v) = \gcd(c,d) = 1$ and

$$\left| \frac{u}{v} - \frac{c}{d} \right| < \frac{1}{2d^2}.$$

Then c/d is one of the convergents of the continued fraction expansion of u/v.

Recall the RSA problem: $ab - k\phi(n) = 1$

Write it as:

$$\frac{b}{\phi(n)} - \frac{k}{a} = \frac{1}{a\phi(n)}$$

Then, if $2a < \phi(n)$, then k/a is a convergent of $b/\phi(n)$.
Wiener’s Theorem

If in RSA cryptosystem

\[a < \frac{1}{3} \sqrt[4]{n}, \]

that is, the length of the private exponent a is less than about one forth of the length of \(n \), then \(a \) can be computed in polynomial time with respect to the length of \(n \).

Proof. First we show that \(\frac{k}{a} \) can be computed as a convergent of \(\frac{b}{n} \), based on Euclidean algorithm, which is polynomial time. To see this, we estimate:

\[\left| \frac{b - k}{n - a} \right| = \left| \frac{ab - kn}{an} \right| = \left| \frac{1 + k\phi(n) - kn}{an} \right| \leq \frac{3k}{a\sqrt{n}} < \frac{3}{\sqrt{n}} < \frac{1}{2a^2}. \]

Wiener’s Algorithm

Then the convergents \(c/d_j = [q_1 q_2 q_3 \ldots q_j] \) of \(\frac{b}{n} \) are computed. For the correct convergent \(k/a = c/d_j \) we have

\[bd_j - c_j \phi(n) = 1. \]

For each convergent one computes

\[n' = (d_j b - 1)/c_j \]

and checks if \(n' = \phi(n) \). Note that \(p + q = n - \phi(n) + 1 \). Then if \(n' = \phi(n) \), the equation

\[x^2 - (n - n' + 1)x + n = 0 \]

has two positive integer solutions \(p \) and \(q \).