T-79.503 [old: T-110.503] Foundations of Cryptology Exam December 15, 2003

- 1. Consider a binary stream cipher where the key stream z_1, z_2, \ldots is formed by repeating a randomly generated bit string $K = (k_1, k_2, \ldots, k_m)$. Hence $z_j = k_i$ if and only if $j \equiv i \pmod{m}$.
 - a) (3 points) The redundancy of the plaintext is R. Determine the unicity distance, that is, how many bits of ciphertext is required on the average to determine the key K?
 - b) (3 points) Assume that m = 5 and the plaintext bit string is formed by repeating the following procedure (a finite number of times): two bits are generated at random, and a third bit is computed as an xor sum of these two bits. The first fifteen bits of the ciphertext are: 0 1 0 1 0 1 1 1 1 1 0 0 0 0 1. Attempt to find the key $K = (k_1, k_2, k_3, k_4, k_5)$.
- 2. (6 points) Consider the finite field $\mathbb{F} = \mathbb{Z}_2[x]/(x^3+x+1)$ and let $f : \mathbb{F} \to \mathbb{F}$ be a function defined as

$$f(z) = z^{-1}$$
, for $z \neq 0$,
 $f(0) = 0$.

Let a Feistel cipher be defined as follows

$$L_{i} = R_{i-1}$$

$$R_{i} = L_{i-1} + f(R_{i-1} + K_{i}),$$

where $L_i \in \mathbb{F}$, $R_i \in \mathbb{F}$ and the round keys are defined as $K_i = K^i$, for i = 1, 2, 3, where $K \in \mathbb{F}$ is the key. Assume that one known plaintext-ciphertext pair is given as follows: $L_0 = 100, R_0 = 001, L_3 = 110$ and $R_3 = 100$. Attempt to find the key K.

3. (6 points) Solve the following system of congruences

$$15x \equiv 12 \pmod{2003}$$
$$12 \equiv x \pmod{2004}$$

4. (6 points) It is given that

 $2^{4!} \equiv 1655213 \,(\bmod 15122003).$

Use the Pollard p-1 algorithm to find a nontrivial divisor of 15122003.

5. (6 points) The parameters in El Gamal Signature Scheme are p = 31, $\alpha = 3$. Alice sees two messages x_1 and x_2 and their signatures (γ_1, δ_1) and (γ_2, δ_2) generated by the same signer with the following values:

$$x_1 = 25, \ \gamma_1 = 24, \ \delta_1 = 7$$

 $x_2 = 5, \ \gamma_2 = 24, \ \delta_2 = 17$

Attempt to find the signer's private key.