1. Consider a binary stream cipher where the key stream z_1, z_2, \ldots is formed by repeating a randomly generated bit string $K = (k_1, k_2, \ldots, k_m)$. Hence $z_j = k_i$ if and only if $j \equiv i \pmod{m}$.

 a) (3 points) The redundancy of the plaintext is R. Determine the unicity distance, that is, how many bits of ciphertext is required on the average to determine the key K?

 b) (3 points) Assume that $m = 5$ and the plaintext bit string is formed by repeating the following procedure (a finite number of times): two bits are generated at random, and a third bit is computed as an xor sum of these two bits. The first fifteen bits of the ciphertext are: 0 1 0 1 0 1 1 1 0 0 0 1. Attempt to find the key $K = (k_1, k_2, k_3, k_4, k_5)$.

2. (6 points) Consider the finite field $\mathbb{F} = \mathbb{Z}_2[x]/(x^3 + x + 1)$ and let $f : \mathbb{F} \to \mathbb{F}$ be a function defined as

 $f(z) = z^{-1}$, for $z \neq 0$,

 $f(0) = 0$.

 Let a Feistel cipher be defined as follows

 $L_i = R_{i-1}$

 $R_i = L_{i-1} + f(R_{i-1} + K_i)$,

 where $L_i \in \mathbb{F}$, $R_i \in \mathbb{F}$ and the round keys are defined as $K_i = K^i$, for $i = 1, 2, 3$, where $K \in \mathbb{F}$ is the key. Assume that one known plaintext-ciphertext pair is given as follows: $L_0 = 100$, $R_0 = 001$, $L_3 = 110$ and $R_3 = 100$. Attempt to find the key K.

3. (6 points) Solve the following system of congruences

 $15x \equiv 12 \pmod{2003}$

 $12 \equiv x \pmod{2004}$

4. (6 points) It is given that

 $2^{41} \equiv 1655213 \pmod{15122003}$.

 Use the Pollard $p-1$ algorithm to find a nontrivial divisor of 15122003.

5. (6 points) The parameters in El Gamal Signature Scheme are $p = 31$, $\alpha = 3$. Alice sees two messages x_1 and x_2 and their signatures (γ_1, δ_1) and (γ_2, δ_2) generated by the same signer with the following values:

 $x_1 = 25$, $\gamma_1 = 24$, $\delta_1 = 7$

 $x_2 = 5$, $\gamma_2 = 24$, $\delta_2 = 17$

 Attempt to find the signer’s private key.