1. (6p.) Consider two binary linear feedback shift registers with polynomials \(f(x) = x^3 + x^2 + x + 1 \) and \(g(x) = x^4 + x + 1 \). Initialize the first register with 111, and the second one with 0101 (the registers are shifted to left). Generate the two output sequences and take their xor-sum sequence. Determine the unique shortest linear feedback shift register that generates the sum-sequence.

2. Consider the “threshold function” \(t: (\mathbb{Z}_2)^3 \rightarrow \mathbb{Z}_2, t(x_1, x_2, x_3) = x_1x_2 + x_2x_3 + x_1x_3 \), where the bit operations are the usual modulo 2 addition and multiplication.

 (a) (3p.) Create the values of the difference distribution table \(N_D(a', b') \) of the function \(t \), for \(a' = 010 \) and \(a' = 111 \) and all \(b' \in \mathbb{Z}_2 \).

 (b) (3p.) Show that \(t \) preserves complementation, that is, if each input bit is complemented then the output is complemented.

3. (6p.) Determine the three least significant decimal digits of the integer \(2005^{2005} \).

4. (6p.)

 (a) Evaluate the Jacobi symbol
 \[
 \left(\frac{801}{2005} \right).
 \]
 You should not do any factoring other than dividing out powers of 2.

 (b) Show that 2005 is an Euler pseudoprime to the base 801.

5. (6p.) Suppose that \(n = 400271 \) is the modulus and \(b = 117353 \) is the public exponent in the RSA Cryptosystem. Using Wiener’s Algorithm, attempt to factor \(n \). If you succeed, determine also the secret exponent \(a \) and \(\phi(n) \).