- 1. (6 points) Consider a binary LFSR with connection polynomial $x^4 + x^3 + x^2 + x + 1$.
 - a) Determine the periods of the binary sequences generated by this LFSR.
 - b) Consider a stream cipher where the keystream is generated as output of this LFSR. The first 19 bits of the ciphertext sequence are
 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 1 1 0 1
 and it is given that the 16th, 17th, 18th and 19th plaintext bits are
 0 1 0 0.
 Find the initial state of the LFSR, that is, the first four bits of the keystream sequence.
- 2. (6 points) Suppose that \mathbf{X}_1 and \mathbf{X}_2 are independent random variables defined on the set $\{0, 1\}$. Let ϵ_i denote the bias of \mathbf{X}_i , for i = 1, 2. Prove that if the random variables \mathbf{X}_1 and $\mathbf{X}_1 \oplus \mathbf{X}_2$ are independent, then $\epsilon_2 = 0$ or $\epsilon_1 = \pm \frac{1}{2}$.
- 3. (6 points) A prime p is said to be a safe prime if (p-1)/2 is a prime.
 - a) Let p be a safe prime, that is, p = 2q + 1 where q is a prime. Prove that an element in \mathbb{Z}_p has multiplicative order q if and only if it is a quadratic residue and not equal to 1 mod p.
 - b) The integer 08012003 (which represents the date of this exam) is a safe prime, since 4006001 is a prime. Generate an element of multiplicative order 4006001 in $\mathbb{Z}_{8012003}$.
- 4. (6 points) It is given that

 $2^{120} \equiv 15068 \pmod{122183}.$

Using the p-1 method, attempt to factor 122183.

5. (6 points) Consider the *ElGamal Public-key Cryptosystem* in the finite field $\mathbb{Z}_2[x]/(x^3 + x + 1)$. The private key is a = 3 and the primitive element is $\alpha = 010$. Compute the public key β , and decrypt the ciphertext (110, 110).