T-79.503 [old: T-110.503] Foundations of Cryptology Exam 03.09.2003

1. (6 points) Let us consider a Feistel cipher which has three rounds and is defined as follows. Denote the lenght of the data block by 2n and the plaintext by (L_0, R_0) , where L_0 and R_0 each is a block of n bits. The following computations are performed:

$$L_i = R_{i-1},$$

 $R_i = L_{i-1} \oplus f_i(R_{i-1}),$

where f_i is a function of n bits and i = 1, 2, 3. Ciphertext is (L_3, R_3) . The Feistel cipher is a one-to-one mapping from the plaintext to the ciphertext, and for some particularly chosen functions f_1 , f_2 and f_3 , the three-round Feistel cipher is the identical mapping, that is, $L_0 = L_3$ and $R_0 = R_3$ for all plaintexts. Determine all such functions f_1 , f_2 and f_3 .

- 2. (6 points) Assume that AES block cipher is used in the CBC mode.
 - a) Estimate the number of ciphertext blocks needed to have the probability of finding two equal ciphertext blocks to become larger than 0.5?
 - b) Assume that two equal ciphertext blocks are detected, which have been produced using the same key (and the CBC mode). What can then be said about the corresponding plaintext blocks?
- 3. (6 points) Suppose that \mathbf{X}_1 and \mathbf{X}_2 are independent random variables defined on the set $\{0, 1\}$. Let ϵ_i denote the bias of \mathbf{X}_i , $\epsilon_i = Pr[\mathbf{X}_i = 0] - \frac{1}{2}$, for i = 1, 2. Prove that if the random variables \mathbf{X}_1 and $\mathbf{X}_1 \oplus \mathbf{X}_2$ are independent, then $\epsilon_2 = 0$ or $\epsilon_1 = \pm \frac{1}{2}$.
- 4. (6 points) Solve the congruence equation

$$x^3 \equiv 9 \,(\mathrm{mod}\,2003).$$

5. (6 points) Alice is using the RSA Cryptosystem and her modulus is $n = 334501 = 167 \cdot 2003$. Decrypt the ciphertext y = 2003.