T-79.503 Fundamentals of Cryptology Homework 7 November 4, 2004

- 1. Consider the finite field $GF(2^3)$ with polynomial $x^3 + x + 1$ (see Stinson 6.4).
 - (a) Create the look-up table for the inversion function $z \mapsto z^{-1}$ in $GF(2^3)$.
 - (b) Compute the algebraic normal form of the Boolean function defined by the least significant bit of the inversion function.
- 2. Compute the linear approximation table (values $N_L(a, b)$) for the substitution transformation defined by the inversion mapping (see exercise 1(a)).
- 3. Consider Galois field $\mathbb{F} = GF(2^8)$ with polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$. The elements of \mathbb{F} are given as octets using hexadecimal notation. Suppose that two polynomials c(x) and d(x) with coefficients in \mathbb{F} are given as follows:

$$c(x) = '03'x^3 + '01'x^2 + '01'x + '02'$$

$$d(x) = '0B'x^3 + '0D'x^2 + '09'x + '0E'$$

Show that $c(x)d(x) = 01' \pmod{x^4 + 01'}$. The polynomial c(x) defines the Mix-Column transformation in Rijndael and d(x) defines its inverse transformation.

- 4. Consider the Galois field $GF(2^n) = \mathbb{Z}_2[x]/f(x)$ where f(x) is a polynomial of degree *n*. We define a mapping in it as $z \mapsto z^3$, for $z \in GF(2^n)$. This mapping defines a *n*-bit to *n*-bit S-box in a natural manner.
 - (a) Prove that this S-box is almost perfect nonlinear, that is, all entries in the difference distribution table $N_D(a', b')$ are either 0 or 2, for all $n \ge 3$.
 - (b) For which values of n this S-box is bijective?
- 5. Consider the example linear attack in Stinson, section 3.3.3. In S_2^2 replace the random variable \mathbf{T}_2 by $\mathbf{U}_6^2 \oplus \mathbf{V}_8^2$. Then in the third round the random variable \mathbf{T}_3 is not needed. What is the final random variable in formula (3.3) (page 87) and what is its bias?