1. Let S be a sequence of bits, with linear complexity L. Its complemented sequence \bar{S} is the sequence obtained from S by complementing its bits, that is, by adding 1 modulo 2 to each bit.

 a) Show that $LC(\bar{S}) \leq L + 1$.

 b) Show that $LC(\bar{S}) = L - 1$, or L, or $L + 1$.

2. a) Prove: If $\Omega(f) \subset \Omega(g)$, then $f(x)$ divides $g(x)$. Hint: Handout 1, Theorem 1

 b) Prove: For all $S(x) \in \Omega(f)$ also $\bar{S}(x) \in \Omega(f)$, if and only if $x + 1$ divides $f(x)$. (Here $\bar{S}(x)$ denotes the complemented sequence of $S(x)$.)

3. Find the LFSR asked in HW02 Problem 4 using Berlekamp-Massey algorithm.

4. For each of the following 5-bit sequences determine its linear complexity and find one of the shortest LFSR that generates the sequence.

 a) 0 0 1 1 1

 b) 0 0 0 1 1

 c) 1 1 1 0 0

 Find also an LFSR which generates all these sequences.

5. Linear recurrence sequences can be considered also over other rings than just \mathbb{Z}_2. Consider $\mathbb{Z}_3 = \{0, 1, 2\}$ and a sequence z_0, z_1, z_2, \ldots generated recursively using the equation $z_{k+3} = 2z_{k+2} + z_{k+1} + z_k$ where all calculations are done mod 3. This corresponds to polynomial equation $x^3 = 2x^2 + x + 1$ what is equivalent to $x^3 + x^2 + 2x + 2 = 0$. The generating polynomial is now $f(x) = x^3 + x^2 + 2x + 2$, where the coefficients are in $\mathbb{Z}_3 = \{0, 1, 2\}$.

 a) $x + 2$ divides $f(x)$. Find the second factor of $f(x)$.

 b) Find the periods of the generated sequences.

6. Consider a cryptosystem where $P = \{A, B\}$ and $C = \{a, b, c\}$, $K = \{1, 2, 3, 4\}$, and the encryption mappings e_K are defined as follows:

 \[
 \begin{array}{c|cc}
 K & e_K(A) & e_K(B) \\
 \hline
 1 & a & b \\
 2 & b & c \\
 3 & b & a \\
 4 & c & a \\
 \end{array}
 \]

 The keys are chosen with equal probability.

 a) Show that
 \[
 \Pr[x = A | y = b] = \frac{2\Pr[x = A]}{1 + \Pr[x = A]}
 \]

 b) Does this cryptosystem have perfect secrecy?