SOLUTIONS

1. (a) IMSI-catching: A false base station can request for non-encryted IMSI, which is a unique identifier of the SIM.
(b) RAND-replay: A false base station can record a used RAND, and at some later time resend it to the MS. In this manner it can force the MS to use the previously used encryption key.
(c) Select a weak encryption algorithm: Base station selects the encryption algorithm in use.
For example a recent attack by Barkan, Biham and Keller exploits (b) and (c). First they record a RAND and encrypted communication. At some later point they resend the RAND and tell to use a weak encryption algotithm. Then they derive the encryption key Kc, which is the same key, which was used in the first recorded ciphertext. Then they can decrypt the first ciphertext.
2.

$$
\begin{aligned}
\mathbb{Z}_{28}^{*} & =\{1,3,5,9,11,13,15,17,19,23,25,27\} \\
\mathbb{Z}_{33}^{*} & =\{1,2,4,5,7,8,10,13,14,16,17,19,20,23,25,26,28,29,31,32\} \\
\mathbb{Z}_{35}^{*} & =\{1,2,3,4,6,8,9,11,12,13,16,17,18,19,22,23,24,26,27,29,31,32,33,34\}
\end{aligned}
$$

3. (a) K is an involutory key of the shift cipher over \mathbb{Z}_{26} if and only is $e_{K}\left(e_{K}(x)\right)=x$, for all $x \in \mathbb{Z}_{26}$, that is, $(x+K)+K \equiv x \bmod (26)$. This condition is satisfied if and only if $K=0$ or $K=13$.
(b) $K=(a, b)$ is an involutory key in the affine cipher over \mathbb{Z}_{n} if and only if $a(a x+b)+b \equiv x(\bmod n)$ for all $x \in \mathbb{Z}_{n}$. This condition is satisfied if and only if

$$
\begin{aligned}
& a^{2} \equiv 1(\bmod n) \text { and } \\
& a b+b \equiv 0(\bmod n),
\end{aligned}
$$

from where the claim follows.
4. The most significant repetitions are KGFDLRLZK and KYEXSRSIQ. The distances are 147 and 77 , respectively. Other shorter repetitions are, for example, XGR, LLA and MVM.

APWVC	DKPAK	BCECY	WXBBK	CYVSE	FVTLV	MXGRG
KKGFD	LRLZK	TFVKH	SAGUK	YEXSR	SIQTW	JXVFL
LALUI	KYABZ	XGRKL	BAFSG	CCMJT	ZDGST	AHBJM
MLGEZ	RPZIJ	XPVGU	OJXHL	PUMVM	CKYEX	SRSIQ
KCWMC	KFLQJ	FWJRH	SWLOX	YPVKM	HYCTA	WEJVQ
DPAVV	KFLKG	FDLRL	ZKIWT	IBXSG	RTPLL	AMHFR
OMEMV	ZQZGK	MSDFH	ATXSE	ELVWK	OCJFQ	FLHRJ
SMVMV	IMBOZ	HIKRO	MUNIE	RYG		

By Kasiski's method, the period is $\operatorname{gcd}(77,147)=7$.
5. a)

$$
\left(\begin{array}{ll}
2 & 5 \\
9 & 5
\end{array}\right)^{-1}=(2 \cdot 5-9 \cdot 5)^{-1}\left(\begin{array}{cc}
5 & 21 \\
17 & 2
\end{array}\right)=23\left(\begin{array}{cc}
5 & 21 \\
17 & 2
\end{array}\right)=\left(\begin{array}{cc}
11 & 15 \\
1 & 20
\end{array}\right)
$$

b)

$$
\left(\begin{array}{rrr}
1 & 11 & 12 \\
4 & 23 & 2 \\
17 & 15 & 9
\end{array}\right)^{-1}=\left(\begin{array}{rrr}
25 & 11 & 22 \\
10 & 13 & 4 \\
17 & 24 & 1
\end{array}\right)
$$

6. $\mathrm{ABX}=0 \cdot 27^{2}+1 \cdot 27+23=050$, and
$\mathrm{ACB}=0 \cdot 27^{2}+2 \cdot 27+1=055$.
From this we see that the "space" and B have been encrypted as follows:

$$
\begin{aligned}
\text { "space" } \mapsto 27 y_{1}+26 & =100 a+10 b+a \mapsto k_{a} k_{b} k_{a}=050 \\
\mathrm{~B} \mapsto 27 y_{2}+1 & =100 a+10 b+b \mapsto k_{a} k_{b} k_{b}=055 .
\end{aligned}
$$

From the equations in the middle, we get the following system of congruences:

$$
\begin{aligned}
101 a+10 b & \equiv 26(\bmod 27) \\
100 a+11 b & \equiv 1(\bmod 27)
\end{aligned}
$$

which has the following unique solution $a=2$ and $b=4$.

