
Simplification of NuSMV Model Checking

Counter Examples

Jussi Lahtinen

February 14, 2008

1

Contents

1 Introduction 3

2 Model Checking 3
2.1 Modeling of Reactive Systems . 4
2.2 Concurrent Systems . 5

3 Temporal Logic 6
3.1 Linear Temporal Logic . 6

4 Bounded Model Checking 7

5 NuSMV Model Checker 7
5.1 NuSMV Models . 7
5.2 NuSMV Counter Examples . 8

6 Cone of Influence Reduction 10

7 Value Change Dump 13

8 Simplifying Counter Examples 14
8.1 Implementation . 14
8.2 Limitations of the Used Method 17
8.3 Known Flaws of the Implementation 17

9 Results 18

10 Conclusions 18

11 Further Development 19

Appendices 20

A Appendix A: The NuSMV model 20

B Appendix B: The NuSMV counter example 22

2

Abstract

The purpose of this study was to find out a method to simplify counter
examples of the NuSMV model checking tool. The method creates a visual
presentation of the counter example. It also identifies redundant variables,
so that only the essential variables are shown. A running example is
discussed.

1 Introduction

Model checking [10] is a relatively new method for system verification. It is
automatic and can find design flaws that the more traditional methods of sim-
ulation and testing easily miss. Model checking is especially applied to systems
where a design failure would result in a catastrophic situation such as hardware
systems, traffic control software or medical instruments [10].

A model checking tool describes a possible flaw in the system in form of a
counter example. The counter example can be used to find out the error in
the system. This work concentrates on the NuSMV model checker [8] and the
counter examples it produces.

Debugging of the counter example is left for humans, and often it is hard
to pinpoint the actual cause of the counter example. The main problem is
the amount of redundant information in the counter example. We introduce a
method that simplifies the counter example trace and transforms it into a more
readable form.

2 Model Checking

Model checking is an automatic technique for verifying finite state concurrent
systems[10]. A simple model checking problem is testing whether a formula in
propositional logic is satisfied by a given model. This means that the formula
must be true in every initial state of the model.

Model checking is used to verify hardware and software designs. More tradi-
tional system verification techniques include simulation, testing and deductive
reasoning [10]. Deductive reasoning normally means the use of axioms and proof
rules to prove the correctness of systems. Deductive reasoning techniques are
often difficult and require a lot of manual intervention. Verification techniques
based on extensive testing or simulation can easily miss significant errors when
the number of possible states of the circuit or protocol is very large. Model
checking on the other hand requires no user supervision and always produces a
counter example when the design fails to satisfy some examined property.

The process of model checking consists of modeling, specification and verifi-
cation. First, the design under investigation has to be converted into a formalism
understood by the used model checking tool. This means that the behaviour
of the system is depicted in a modeling language. The model should capture

3

important properties of the system and at the same time abstract away unin-
teresting details that will only complicate the verification process. [10]

Secondly, the system has some properties it must satisfy. These properties
or specifications are usually given in some logical formalism. For hardware and
software designs, it is typical to use temporal logic [14], which examines the
behaviour of the system over time.

After modeling and specification, only the fully automatic verification part
remains. If the design meets the desired properties, the verification tool will
state that the specifications were true. In case of a design flaw or an incorrect
modeling or specification, a counter example will be presented. A counter ex-
ample presents a legal execution sequence in the model that is not accepted by
some specification. The analysis of the counter example is usually impossible
to do automatically and thus involves human assistance. The counter example
can help the designer find the errors in the design or in the model.

There are several model checking techniques. Many of them suffer from
the state explosion problem [9]. State explosion results from the fact that the
number of states in a system grows exponentially as the size of the model in-
creases. Although the system is still finite, the verifying might be too complex
for even state of the art computers. No total solution to this problem has yet
been found, although symbolic representation of the state space using BDDs or
reducing the needed state space using abstraction have been found useful [9].
Partial order reduction [12] is also a typical state space reduction method. Nev-
ertheless, model checking is likely to prove an invaluable tool to verify system
requirements or design.

2.1 Modeling of Reactive Systems

Often, and especially in our case, the systems to be modeled are such that they
interact with their environment frequently and usually will not terminate. Such
systems are referred to as reactive systems [5]. Reactive systems can not be
adequately modeled only by their input-output behaviour. We also need to be
able to model what happens inside such systems.

In order to examine reactive systems we need to capture the state of the sys-
tem. A state represents a description of the system that captures every variable
value at a specific time instant.

Transitions depict the possible ways the system can change its state. A
transition is a pair of states. The initial state corresponds to the system config-
uration before an action, the second state of the pair corresponds to the state
after the action. Only some transitions between states are usually allowed.

A computation is a sequence of states. If the model of a reactive system is
thought as a directed graph with states as vertices and transitions as edges, a
computation would be a path in the graph. These kind of graphs are usually
called Kripke structures [10]. Kripke structures are simple, but they can model
reactive systems quite effectively. They are expressive when it comes to some

4

temporal issues that are essential in reactive systems. Kripke structure is the
standard representation of models in the model checking literature[4]. It cap-
tures adequately the system semantics.

A Kripke structure is defined as a quadruple M = (S, R, S0, L) where S is
the set of states, S0 ⊆ S is the set of initial states, R ⊆ S × S is the transition
relation and L : S → P (A) is the labeling function, where A is the set of atomic
propositions, and P (A) is the powerset over A. The labeling function describes
the relations between the states and the atomic proposition values. Atomic
propositions are used to express which variable values are true in the states of
the structure. For a state s ∈ S the set L(s) is the set of atomic propositions
that hold in s.

Figure 1: A simple Kripke structure. S = {s, t}, S0 = s,R =
{(s, t), (t, s), (t, t)}, L(s) = {P}, L(t) = {Q}

Figure 1 shows a graphical representation of a typical Kripke structure. It
has two states: s and t. The state s is the initial state since it has an incoming
edge without a source. The structure has three transitions: from s to t, from t
to s and from t to itself. The labeling is such that L(s) = {P} and L(t) = {Q}
i.e. the atomic proposition P holds in s and the atomic proposition Q holds in t.

2.2 Concurrent Systems

A concurrent system [10] is a set of components that execute together. Concur-
rent systems are typical targets of model checking. That is why it is important
to specify exactly how the components execute with respect to each other. Typ-
ically the mode of execution is either synchronous execution or asynchronous
execution.

Synchronous execution means that all the components of the concurrent sys-
tem execute at the same time. The operation of a synchronous system consists
of a sequence of steps. In each step, the inputs to the system change. After this
the clock pulse occurs, and all the system output values are calculated using
these inputs.

In asynchronous execution, only one component makes a step at a time. It
is not required that every component gets a turn. Some component can execute
repeatedly, without another component ever making a step.

5

3 Temporal Logic

Temporal logic is an extension of classical logic. It uses atomic propositions,
boolean connectives and some temporal operators. Some temporal logics like
linear temporal logic describe the ordering of events in time without a real
valued clock. It might be specified that some property eventually happens or
never happens. Temporal logics can be classified according to the assumed
structure of time. Some temporal logics assume linear time structure, some
assume a branching time structure.

3.1 Linear Temporal Logic

Linear temporal logic(LTL) [13] has linear time structure, so it sees future as
a path. The formal semantics of temporal formulas is defined with respect to
paths of a Kripke structure[4]. When a set of paths is considered, the LTL
formula has to be true on all paths to be true.

Linear temporal logic uses atomic propositions, the usual boolean connec-
tives ¬, ∧, ∨, → and the following temporal modal operators:

• X (”next”) requires that the property holds at the next state of the path.

• G (”globally”) requires that the property holds at every state on the path.

• F (”eventually” or ”in the future”) holds when a property is true at some
state of the path.

•U (”until”) is a binary operator. Formula P U Q holds when P is true un-
til Q becomes true. Also, the second argument must become true at some point.

• R is for release. Formula P R Q requires that either Q is always true or
it is true until P becomes true.

Consequently, the LTL formulas are as follows:

φ ::= true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | φ1 → φ2

| Gφ | Fφ | Xφ | [φ1Uφ2] | [φ1Rφ2]

For example a LTL formula G(aU (b ∨ c)) would mean that on every path
either b or c is true at the current position or a holds until either b or c becomes
true.

The properties considered in model checking are usually either safety prop-
erties or liveness properties. Safety properties usually state that something bad
never happens (Gφ → G¬σ). Liveness properties state that something good
keeps happening (Gφ → Fσ).

6

4 Bounded Model Checking

Bounded model checking (BMC) [4] is a model checking technique which uses
a propositional SAT solver [3] instead of using binary decision diagram (BDD)
[4, 6] techniques. In BMC the basic idea is to try to find counter examples whose
length is bounded by some integer k. The bound is increased until a counter
example is found or the bound exceeds the completeness threshold (CT). Given
a model M , a property p and a translation scheme, CT is an integer such that
the absence of errors for CT cycles proves that M |= p. The completeness
threshold exists for finite state systems. Usually the completeness threshold is
not known. In these cases the calculations are terminated when they become
too intense and complex.

The BMC problem can be effectively reduced to a propositional satisfiabil-
ity problem that can be solved using a SAT solver. The BMC technique does
not ensure better performance or productivity, although in some cases it can
outperform the traditional BDD-techniques. This is because SAT solving does
not suffer from the state explosion problem unlike BDD techniques.

The reduction to a SAT problem is quite complex. Suppose the model is
given as a Kripke structure M , and the specification to be checked is given as
a LTL formula f . The integer bound is k. Let s0, ..., sk be a finite sequence of
states on a path π. We will construct a propositional formula [[M,¬f]]k such
that it is satisfiable iff π is a trace that contradicts the formula f . The full SAT
reduction is represented in [4].

5 NuSMV Model Checker

NuSMV [7] is a symbolic model checker that can be used to analyse tempo-
ral logic (LTL or CTL) specifications of various systems. The system can be
expressed in the NuSMV modeling language. The system specifications are
expressed in temporal logic.

5.1 NuSMV Models

The NuSMV modeling language allows the representation of synchronous and
asynchronous finite state systems. The models can be divided into modules that
can interact with each other. Every model contains the main module, which can
have references to the other modules. The allowed data types in NuSMV are
boolean, bounded integer and enumeration types. Arrays and set types are also
allowed.

To be able to check LTL properties against the system, NuSMV flattens the
model into a Kripke structure. This is possible because a finite state system
is very similar to the Kripke structure discussed earlier. Finite state system is
a triplet (S, T, I), where S is the set of states, T is the transition relation and
I is the initial state. These correspond to the states, transition relation and
the initial states of the Kripke structure. Each state in the Kripke structure is
essentially a tuple containing one value for each state variable. A transition in

7

a Kripke structure denotes change in the value of one or more state variables.
A given property is actually checked against the Kripke structure obtained by
flattening the given model.

The states of a finite state system are described by the state variable val-
ues in NuSMV. State variables can be deterministic output variables or non-
deterministic input variables. This means that an input variable can be given
any value from its domain without any specification of which one will be taken.
Output variable values are determined unambiguously based on other variable
values. The initial states are determined by giving the state variables some ini-
tial values. If an initial value is not given, it means that the variable can have
any value at that time point. The transition relation of a finite state system is
represented as ”next” commands in the NuSMV model. These commands are
the rules based on which the value of the output variables are determined after
the initial time point.

An example of an output variable is shown below.

init(time2) := 0;
next(time2) := case
(relay2buffer = alarm & time2 < 30): time2 +1;
(relay2buffer = alarm & time2 = 30): 30;
1 : 0;
esac;

We can see that the initial value of the variable time2 is set to 0. After the
initial time point the value depends on relay2buffer and the value of time2
itself. If relay2buffer has value ”alarm” and time2 is less that 30, the value of
time2 will be increased by one. If relay2buffer has value ”alarm” and time2
is in its maximum value 30, the value of time2 will not change. In other cases
the value of time2 is set back to 0.

A model of a possible safety system is presented in Appendix A. The model
uses basic boolean logic connectors (AND and OR) and counter variables to
calculate the output variable values. It is a description of the rules according to
which the system shuts down parts of its power sources in case of an emergency.
The model has two parts: the variable definition part (VAR), and the variable
assignment part (ASSIGN). The VAR-part contains all the variable declara-
tions. The ASSIGN-part contains the initialisation and the ”next”-rules. In the
last line of the model is the LTL specification.

The LTL specification to be checked claims that it is not possible for the
variable relay2 to become in the state ”alarm”. In our presented system this
would mean that shutting down some part of the system would never be possible.
In other words, we want to know if the relay is unnecessary in the system. We
are expecting to find a counter example stating otherwise.

5.2 NuSMV Counter Examples

Model checking procedures will either confirm the specification or produce a
counter example. A counter example describes a computation that is allowed

8

in the model but make the examined system specification false.

NuSMV flattens the model and transforms it into a Kripke structure. The
paths in the Kripke structure depict all the possible computations of the model.
Counter examples are paths in the Kripke structure, that do not behave accord-
ing to the given LTL specification.

Since a path is a sequence of states, and states are identified by the variable
values of the model, NuSMV can represent counter examples by basically listing
the states of the path in traversing order. In the initial state all the variable
values are listed. After that, a variable value is printed only in case of a change
in its values. An example of such a counter example is shown below.

-- specification G (z = alarm -> F x) is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-

x = 1
n = 1
z = OK

-> Input: 1.2 <-
-> State: 1.2 <-

x = 0
n = 2
z = alarm

-> Input: 1.3 <-
-- Loop starts here
-> State: 1.3 <-

n = 1
z = OK

-> Input: 1.4 <-
-> State: 1.4 <-

n = 2
-> Input: 1.5 <-
-> State: 1.5 <-

n = 1

First it is stated that the examined specification was false. There exists an
execution sequence in the system that breaks the LTL formula:

G (z = alarm -> F x)

The specification basically states that if z has value ”alarm” then x has to
become true in the future. The counter example shows how this specification
could however break. We can see that in the initial time step(State 1.1) variables
x and n have value 1. z has an initial value ”OK”. In the next time step
(State 1.2) z gets the value ”alarm” and x is set to 0. Now, according to the
specification, x should become true in the future.

But there is a possible loop presented in the counter example. This is marked
with the ”Loop starts here” -line. The line just means that the variable values

9

are the same in these states and the final state, so the behaviour can occur
repeatedly. We can see that x never becomes true in the loop. This is why the
specification was false.

6 Cone of Influence Reduction

Cone of influence (COI) reduction [10] is an abstraction technique that focuses
on the variables in the specification. Cone of influence reduction eliminates
variables that do not influence the variables in the specification. In our case,
the benefit is seen in the length and complexity of the counter example.

We will show how the cone of influence reduction can be applied to syn-
chronous circuits. Let V be the set of variables in a given circuit. This circuit
can be described by a set of equations

v′i = fi(V),

for each vi ∈ V , where fi is a boolean function. Suppose we are given a set of
variables V ′ ⊆ V that are of interest with respect to the required specification.
We would like to simplify the description of the system by referring only to these
variables. However, the values of variables in V ′ might depend on variables not
in V ′. We therefore define the cone of influence C for V ′ and use C in order to
reduce the description of the system.

The cone of influence C of V ′ is the minimal set of variables such that

•V ′ ⊆ C.
• if for some vl ∈ C its fl depends on vj , then vj ∈ C.

We will next show that the cone of influence reduction preserves the cor-
rectness of specifications used in NuSMV (CTL, LTL) if they are defined over
variables in C.

Let V = {v1, ..., vn} be a set of boolean variables and let M = (S, R, S0, L)
be the model of a synchronous circuit defined over V where,

•S = {0, 1}n is the set of all valuations of V .
•R = {(s, t) ∈ S × S | s |= v ∈ V, t |= v′i, v

′
i = fi(V)}

•L(s) = {vi | s(vi) = 1 for 1 ≤ i ≤ n}.
•S0 ⊆ S.

Suppose we reduce the circuit with respect to the cone of influence C =
{v1, ..., vk} for some k ≤ n. The reduced model M̂ = (Ŝ, R̂, Ŝ0, L̂) is defined by

•Ŝ = {0, 1}k is the set of all valuations of {v1, ..., vk}.
• R̂ =

{
(s, t) ∈ Ŝ × Ŝ | s |= v ∈ C, t |= v′i, v

′
i = fi(C)

}

• L̂(ŝ) = {vi | ŝ(vi) = 1for1 ≤ i ≤ k}.
• Ŝ0 = {(d̂1, ..., d̂k) | there is a state (d1, ..., dn) ∈ S0 such that

(
d̂1 = d1

)
∧ ...∧

10

(
d̂k = dk

)
}.

We want to show that the models M and M̂ behave similarly. Bisimulation
is a very strong indication of similar behaviour. A relation B ⊆ S× Ŝ is a bisim-
ulation relation between M and M̂ if and only if for all s and ŝ, if (s, ŝ) ∈ B
then the following conditions hold:

•L(s) = L̂(ŝ).
• For every state s1 such that (s, s1) ∈ R there is ŝ1 such that (ŝ, ŝ1) ∈ R̂ and
(s1, ŝ1) ∈ B.
• For every state ŝ1 such that (ŝ, ŝ1) there is s1 such that (s, s1) ∈ R and
(s1, ŝ1) ∈ B.

Let B ⊆ S × Ŝ be the relation defined as follows:

((d1, ..., dn), (d̂1, ..., d̂k)) ∈ B ⇐⇒ di = d̂i for all 1 ≤ i ≤ k

We show that B is a bisimulation relation between M and M̂ . For ev-
ery initial state in S there is a corresponding initial state in Ŝ and vice versa.
Let s = (d1, ..., dn) and ŝ = (d̂1, ..., d̂k) such that (s, ŝ) ∈ B. Then di = d̂i for
every 1 ≤ i ≤ k. Thus, their labeling restricted to C = {v1, ..., vk} agree, that is,

L(s) ∩ C = L̂(ŝ).

Let s → t be a transition in M . We show that there is a transition ŝ → t̂ in
M such that (t, t̂) ∈ B. Denote t = (e1, ..., en).

The definition of R implies that for every 1 ≤ i ≤ n, v′i = fi(V). However,
for 1 ≤ i ≤ k , vi depends only on variables in C, hence v′i = fi(C). Further-
more, (s, ŝ) ∈ B implies

∧k
i=1(di = d̂i). Thus, for every 1 ≤ i ≤ k,

ei = fi(d1, ..., dk) = fi(d̂1, ..., d̂k).

If we choose t̂ = (e1, ..., ek) then ŝ → t̂ and (t, t̂) ∈ B as required. Now let
ŝ → t̂ be a transition in R̂ where t̂ = (ê1, ..., êk). Then, for every 1 ≤ i ≤ k,
êi = fi(d̂1, ..., d̂k). Consider the transition s → t in R for some t = (e1, ..., en).
Since

∧k
i=1(di = d̂i) and since the value of vi ∈ C depends only on values of

variables in C, we have:

êi = fi(d̂1, ..., d̂k) = fi(d1, ..., dk) = fi(d1, ..., dk, dk+1, ...dn) = ei.

Hence, (t, t̂) ∈ B. This completes the proof that B is a bisimulation between
M and M̂ . Thus, M ≡ M̂ .

If two structures are bisimulation equivalent, then every initial state of one
is bisimilar to some initial state of the other [10]. Because a structure satis-
fies a formula if and only if each of its initial states satisfies the formula, both
structures will satisfy the same set of LTL formulas. Now, because M ≡ M̂ , it
directly follows:

11

M |= f ⇔ M̂ |= f , where f is a LTL formula with atomic propositions in C.

In other words, the cone of influence reduction preserves correctness.

In practice, NuSMV can calculate the cone of influence structure directly
from the NuSMV model. Variable relationships can be determined from the
variable assignments. In our example, the amount of variables of the counter
example in Appendix B was decreased from 25 to 5. The counter example was
produced with NuSMV from the model in Appendix A.

If the model in case is examined, it becomes clear that only these five vari-
ables have had influence on the value of the specification. The LTL formula
there was:

LTLSPEC G !(relay2 = alarm);

The goal was to find out which variables of the model really create the
counter model. It is quite clear that the output of relay2 = alarm depends on
the value of the variable relay2. No other variables have a direct connection or
influence to the value of the clause. It is, however, possible for the other vari-
ables to have some indirect influence to the output of the LTL formula. That
is because the value of relay2 depends on other variables on the previous time
steps. In the model we can see how the value of relay2 is determined:

next (relay2) := case
((time2 = 30) & (ch1 & ch4)) : alarm;
1 : OK;

esac;

On the grounds of this we can deduce that since relay2 is directly influenced
by variables time2, ch1 and ch4, also the LTL formula is somehow influenced
by these variables i.e. the variables belong to the cone of influence of the for-
mula. Now we can continue this kind of iterative examination of the variables
with time2, ch1 and ch4. We notice that ch1 and ch4 are non-determined
input variables of the model. This means that they can have any values and no
other variables have any influence on them. This leaves only variable time2:

next (time2) := case
(relay2buffer = alarm & time2 < 30): time2 +1;
(relay2buffer = alarm & time2 = 30): 30;
1 : 0;

esac;

The value of time2 depends on the value of itself and the variable re-
lay2buffer. This is also added to the cone of influence of the formula since
it has influence on time2 which has influence on relay2 which solely deter-
mines the output of the formula. We still have to check the dependencies of
relay2buffer:

12

next(relay2buffer) := case
(ch1 & ch4) : alarm;
1 : OK;
esac;

It is easy to see that no new variables are introduced. Variable relay2buffer
depends only on ch1 and ch4, but both of these variables are already in the
cone of influence. Now the iterative work is done because no new variables were
found. No other variables can belong to the cone of influence. It now contains
all the variables that have any influence on the formula, and all variables that
have any influence on other variables that have some direct or indirect influence
on the formula.

7 Value Change Dump

Value Change Dump (VCD) [11] is an industry standard file format that is
widely supported. VCD files are used to describe a computation of a computer
program. The changes in variable values according to time are recorded.

A simple VCD file could be the following:

$timescale 1 ns $end
$var integer 8 cycle cycle $end

$enddefinitions $end

#1
b1 cycle

#3
b10 cycle

#5
b11 cycle

First, the time scale of the computation is defined. In this case one time
step corresponds to one nanosecond. Next, a single integer variable cycle is
defined. After this the definition part ends, and the actual computation part
begins. The lines starting with the ”#”-character depict the changes in time.
The value of time starts from 1 and is only supposed to increase. Some time
values can be skipped. Here the only time values shown are 1, 3 and 5.

After the current time value is mentioned, the changes in variable values can
be stated. The new variable value is always written in binary, regardless of the
actual variable type. The line ”b10 cycle” states that variable ”cycle” has a
new value 10 in binary, which translates into 2 in decimal value.

13

The computation depicted in this VCD example is such that in the beginning
the variable cycle has value 1. After that the value increases by 1 every two
time steps. The computation ends after five time steps.

8 Simplifying Counter Examples

When a model checking method detects a contradicting execution path, it pro-
duces a counter example. It is left for humans to find out the real cause of the
counter example i.e. what is the actual flaw in the system. Sometimes counter
examples make this examination really difficult. Counter examples might have
a lot of redundant information. Usually only some proportion of the variables
are necessary to understand the flaw. Counter examples can also be quite long.
A lengthy example of a NuSMV counter example is in Appendix B. It is a path
containing 37 states and 25 different variables. The counter example was pro-
duced from the fairly simple NuSMV model in Appendix A. Already here it
is quite time consuming to try to find out what really happens in the counter
example. When the modeled system becomes more complex, the amount of
shown variables naturally increases. Also, longer counter examples are possible.
Apparently, it is of interest to try to reduce the amount of redundant informa-
tion. A more readable format would also be convenient.

8.1 Implementation

The program created for this task is called NuSMVToVCD. It can do both:
translate the counter example into a more compact graphical representation,
and reduce the amount of shown variables in the counter example.

The graphical representation is produced by changing the NuSMV output
into an equivalent VCD file. VCD files can then be opened with a graphical
software such as GtkWave [1]. GtkWave’s graphical view has time as the x-axis.
The variable values are plotted in parallel with respect to time. Boolean values
are shown as waveform signals. In case of integer or ASCII -variables, the value
of the variable is printed. A picture of GtkWave interface with the NuSMV
counter example presented earlier is in Figure 2. The list of variables is in the
middle titled Signals. On the right are the variable values with time as the
x-axis.

NuSMVToVCD can also perform some variable reductions. This is done
by examining the cone of influence structure of the variables mentioned in the
specification. Variables not in this structure are left out.

NuSMVToVCD consists of perl scripts and a shell script nusmv2vcd which
will handle the use of the perl scripts and all the other files created during
execution of the program. The program uses NuSMV [7] to create a counter ex-
ample and then parses it. The counter example length is then used as an upper
bound for bounded model checking of the model. The bounded model checking
result can be different from the original output so the counter example needs
to be parsed again. After this it can be transformed into a VCD -file. During

14

Figure 2: GtkWave Interface
15

the bounded model checking a cone of influence for every variable is calculated.
Using this information, the necessary variables are isolated from the others by
putting them to a separate variable scope. The redundant variables are also
removed from the graphical view.

A description of the program with Cone of Influence -reduction in pseu-
docode:

if (parameter = -coi)
Create all tempfiles
Write variable names to a tempfile
Write examined property to a tempfile
Use NuSMV to find a counter example, write to a file
if (specification is true)

print "The specification was true"
exit

Check counter example length
Use the length as an upper bound of BMC with NuSMV
Use NuSMV to write shortest counter example and the

Cone of Influence structure to a file

parse the counter example -file
extract Cone of Influence -variables
extract the counter example -part and filter it to a basic SMV format
change variable names with dots(.)

Use smv2vcd to create a .vcd file and a .sav file
Modify the files to create variable scopes(Relevant / Other)
Modify the .sav -file so that only coi-variables are shown
Create a script file to assist gtkwave appearance
remove temporary files
launch gtkwave
remove .vcd .sav and the gtkwave-script -files

end

The transformation from NuSMV counter examples to a vcd-file is possible
because the NuSMV [7] counter example format is very similar to the VCD-
format [11]. Both have some measurement of time, and in both the changes of
variable values are somehow recorded. This is why the change between these
formats is quite easy and can be done line by line of the NuSMV output.

A tool for this action already exists (smv2vcd)[2] , but it does not fully
support this version of NuSMV. That is why the NuSMV output needs to be
formatted: the indentation has to be removed as well as the ”Input” lines and
arrow signs (-> and <-).

The relevant variables can be found by examining the output of the bounded
model checking [10] of the model, with high verbose level and the cone of influ-
ence reduction enabled. From this output a cone of influence of every variable
can be found. By combining the COIs of the variables in the examined specifi-

16

cation, only the relevant variables remain.

When the relevant variables are known, and a VCD-file is made, the visible
variables can be selected by modifying the GtkWave save-file where a list of
visible variables is.

8.2 Limitations of the Used Method

The program will expect to find only one LTL-specification that has to be false.
More than one specification will probably cause unexpected behaviour.

We will be checking only LTL(Linear Temporal Logic) specifications using
NuSMV. The use of CTL-clauses is not supported although the program will
probably manage to visualise a counter model when the ”-coi” flag is not used.

The NuSMV model checker does not recognise the macro-variables as real
variables. This is why the COI-reduction sometimes fails to represent explana-
tory variables, and only some core variables are shown. The macro variables in
NuSMV are not part of the cone of influence -structure.

8.3 Known Flaws of the Implementation

In GtkWave save file -format the use of dot(.)-character is reserved for variable
grouping purposes. This causes problems with variable names containing the
dot-character. This is resolved so that all the dots in variable names will be au-
tomatically changed to underscores() after the counter model has been created.

LTL-specifications that are outside the main module are troublesome. This
is because the variables outside the main module are normally referred to as
”module.variable-name”. In a LTL-specification outside the main module the
module part is left out. Thus the variables can not be recognised.

17

9 Results

Using the program, the counter example (273 lines) in Appendix B can be fit
on one page. The graphical representation is in Figure 3. After the variable
reductions are applied, the amount of shown variables decreased from 25 to 5.
This result can be seen in Figure 4.

Figure 3: Counter model in graphical form, without variable reductions.

10 Conclusions

In our result, the amount of variables of the counter example in Appendix B
decreased from 25 to 5. The counter example was produced with NuSMV from
the model in Appendix A.

We have come to the conclusion that only these five variables cause the spec-
ification to fail. These are exactly the variables presented by our program. In
this case the reduction has thus been successful.

In general, the effectiveness of this method depends greatly on the model
itself. In some models all the variables depend on each other, and the cone of
influence reduction does not help at all. Sometimes the method can come up
with only a small set of explanatory variables.

18

Figure 4: Counter model in graphical form with cone of influence reductions.

11 Further Development

The cone of influence reduction is not perfect. It only shows the variables that
can, but not necessarily have influence on the specification. It is also possible
that some variable forms a tautology (a clause that is always true). In this case
the variable is redundant, unless it additionally exists somewhere else.

The LTL-clause:

LTLSPEC G((x & !x) | y);

does not really depend on x, because (x & !x) is always false. Basically the
clause reduces to:

LTLSPEC G(y);

This reduction is out of our reach with cone of influence examination.

It could also be the case that y was always true and the specification is:

LTLSPEC G !(x | y);

Here we don’t really need to include x and the variables in its cone of influence,
since the fact that y is always true, already explains the supposed counter ex-
ample.

To further reduce the amount of necessary variables we could simulate the
counter example with some of the variables left non-deterministic and see if the
counter example would still unavoidably be the same.

19

A Appendix A: The NuSMV model

MODULE main
VAR
ch1 : boolean;
ch2 : boolean;
ch3 : boolean;
ch4 : boolean;

f1 : boolean;
ARCFail : boolean;
triac1 : {OK, alarm};
triac2 : {OK, alarm};
triac3 : {OK, alarm};
triac4 : {OK, alarm};

relay1 : {OK, alarm};
relay2 : {OK, alarm};
relay3 : {OK, alarm};
relay4 : {OK, alarm};
relay5 : {OK, alarm};
relay6 : {OK, alarm};

relay1buffer : {OK, alarm};
relay2buffer : {OK, alarm};
relay3buffer : {OK, alarm};
relay4buffer : {OK, alarm};

time1 : 0..30;
time2 : 0..30;
time3 : 0..30;
time4 : 0..30;

ASSIGN
init(triac1) := OK;
init(triac2) := OK;
init(triac3) := OK;
init(triac4) := OK;
init(relay1) := OK;
init(relay2) := OK;
init(relay3) := OK;
init(relay4) := OK;
init(relay5) := OK;
init(relay6) := OK;
init(relay1buffer) := OK;
init(relay2buffer) := OK;
init(relay3buffer) := OK;
init(relay4buffer) := OK;

init(time1) := 0;

next(time1) := case
(relay1buffer = alarm & time1 < 30): time1 +1;
(relay1buffer = alarm & time1 = 30): 30;
1 : 0;
esac;
init(time2) := 0;

next(time2) := case
(relay2buffer = alarm & time2 < 30): time2 +1;
(relay2buffer = alarm & time2 = 30): 30;
1 : 0;
esac;
init(time3) := 0;

next(time3) := case
(relay3buffer = alarm & time3 < 30): time3 +1;
(relay3buffer = alarm & time3 = 30): 30;
1 : 0;
esac;
init(time4) := 0;

next(time4) := case
(relay4buffer = alarm & time4 < 30): time4 +1;
(relay4buffer = alarm & time4 = 30): 30;
1 : 0;
esac;

next(triac1) := case
(ch2 & ch4) : alarm;
1 : OK;
esac;
next(triac2) := case
(ch3 & ch4) : alarm;
1 : OK;
esac;
next(triac3) := case
((ch2 & ch4) | (ch3& ch4)) : alarm;
1 : OK;
esac;
next(triac4) := case
((ch2 & ch4)| (ch3 & ch4)) : alarm;
1 : OK;
esac;

20

next(relay1buffer) := case
(ch4 & f1) : alarm;
1 : OK;
esac;
next(relay2buffer) := case
(ch1 & ch4) : alarm;
1 : OK;
esac;
next(relay3buffer) := case
((ch4 & f1) | (ch1 & ch4)) : alarm;
1 : OK;
esac;

next(relay4buffer) := case
((ch4 & f1) | (ch1 & ch4)) : alarm;
1 : OK;
esac;

next(relay1) := case
((time1 = 30) & (ch4 & f1)): alarm;
1 : OK;
esac;
next(relay2) := case
((time2 = 30) & (ch1 & ch4)) : alarm;
1 : OK;
esac;
next(relay3) := case
((time3 = 30) & ((ch4 & f1) | (ch1 & ch4))) : alarm;
1 : OK;
esac;
next(relay4) := case
((time4 = 30) & ((ch4 & f1)| (ch1 & ch4))) : alarm;
1 : OK;
esac;

next(relay5) := case
(ARCFail) : alarm;
1 : OK;
esac;
next(relay6) := case
(ch1|ch2|ch3|ch4|f1) : alarm;
1 : OK;
esac;

LTLSPEC G !(relay2 = alarm);

21

B Appendix B: The NuSMV counter example

-- specification G !(relay2 = alarm) is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
Trace Type: Counterexample
-- Loop starts here
-> State: 1.1 <-

ch1 = 0
ch2 = 0
ch3 = 0
ch4 = 0
f1 = 0
ARCFail = 0
triac1 = OK
triac2 = OK
triac3 = OK
triac4 = OK
relay1 = OK
relay2 = OK
relay3 = OK
relay4 = OK
relay5 = OK
relay6 = OK
relay1buffer = OK
relay2buffer = OK
relay3buffer = OK
relay4buffer = OK
time1 = 0
time2 = 0
time3 = 0
time4 = 0

-> Input: 1.2 <-
-> State: 1.2 <-

ch1 = 1
ch4 = 1
f1 = 1
ARCFail = 1

-> Input: 1.3 <-
-> State: 1.3 <-

relay5 = alarm
relay6 = alarm
relay1buffer = alarm
relay2buffer = alarm
relay3buffer = alarm
relay4buffer = alarm

-> Input: 1.4 <-
-> State: 1.4 <-

time1 = 1
time2 = 1
time3 = 1
time4 = 1

-> Input: 1.5 <-
-> State: 1.5 <-

time1 = 2
time2 = 2
time3 = 2
time4 = 2

-> Input: 1.6 <-
-> State: 1.6 <-

time1 = 3
time2 = 3
time3 = 3
time4 = 3

-> Input: 1.7 <-
-> State: 1.7 <-

time1 = 4
time2 = 4
time3 = 4
time4 = 4

-> Input: 1.8 <-
-> State: 1.8 <-

time1 = 5
time2 = 5
time3 = 5
time4 = 5

-> Input: 1.9 <-
-> State: 1.9 <-

time1 = 6
time2 = 6
time3 = 6
time4 = 6

-> Input: 1.10 <-
-> State: 1.10 <-

time1 = 7
time2 = 7
time3 = 7
time4 = 7

-> Input: 1.11 <-
-> State: 1.11 <-
time1 = 8
time2 = 8
time3 = 8
time4 = 8

-> Input: 1.12 <-
-> State: 1.12 <-
time1 = 9
time2 = 9
time3 = 9
time4 = 9

-> Input: 1.13 <-
-> State: 1.13 <-
time1 = 10
time2 = 10
time3 = 10
time4 = 10

-> Input: 1.14 <-
-> State: 1.14 <-
time1 = 11
time2 = 11
time3 = 11
time4 = 11

-> Input: 1.15 <-
-> State: 1.15 <-
time1 = 12
time2 = 12
time3 = 12
time4 = 12

-> Input: 1.16 <-
-> State: 1.16 <-
time1 = 13
time2 = 13
time3 = 13
time4 = 13

-> Input: 1.17 <-
-> State: 1.17 <-
f1 = 0
time1 = 14
time2 = 14
time3 = 14
time4 = 14

22

-> Input: 1.18 <-
-> State: 1.18 <-

f1 = 1
relay1buffer = OK
time1 = 15
time2 = 15
time3 = 15
time4 = 15

-> Input: 1.19 <-
-> State: 1.19 <-

relay1buffer = alarm
time1 = 0
time2 = 16
time3 = 16
time4 = 16

-> Input: 1.20 <-
-> State: 1.20 <-

time1 = 1
time2 = 17
time3 = 17
time4 = 17

-> Input: 1.21 <-
-> State: 1.21 <-

time1 = 2
time2 = 18
time3 = 18
time4 = 18

-> Input: 1.22 <-
-> State: 1.22 <-

time1 = 3
time2 = 19
time3 = 19
time4 = 19

-> Input: 1.23 <-
-> State: 1.23 <-

time1 = 4
time2 = 20
time3 = 20
time4 = 20

-> Input: 1.24 <-
-> State: 1.24 <-

time1 = 5
time2 = 21
time3 = 21
time4 = 21

-> Input: 1.25 <-
-> State: 1.25 <-

f1 = 0
time1 = 6
time2 = 22
time3 = 22
time4 = 22

-> Input: 1.26 <-
-> State: 1.26 <-

f1 = 1
relay1buffer = OK
time1 = 7
time2 = 23
time3 = 23
time4 = 23

-> Input: 1.27 <-
-> State: 1.27 <-

relay1buffer = alarm
time1 = 0
time2 = 24
time3 = 24
time4 = 24

-> Input: 1.28 <-
-> State: 1.28 <-

time1 = 1
time2 = 25
time3 = 25
time4 = 25

-> Input: 1.29 <-
-> State: 1.29 <-

f1 = 0
time1 = 2
time2 = 26
time3 = 26
time4 = 26

-> Input: 1.30 <-
-> State: 1.30 <-

f1 = 1
relay1buffer = OK
time1 = 3
time2 = 27
time3 = 27
time4 = 27

-> Input: 1.31 <-
-> State: 1.31 <-

f1 = 0
relay1buffer = alarm
time1 = 0
time2 = 28
time3 = 28
time4 = 28

-> Input: 1.32 <-
-> State: 1.32 <-
f1 = 1
relay1buffer = OK
time1 = 1
time2 = 29
time3 = 29
time4 = 29

-> Input: 1.33 <-
-> State: 1.33 <-
relay1buffer = alarm
time1 = 0
time2 = 30
time3 = 30
time4 = 30

-> Input: 1.34 <-
-> State: 1.34 <-
f1 = 0
ARCFail = 0
relay2 = alarm
relay3 = alarm
relay4 = alarm
time1 = 1

-> Input: 1.35 <-
-> State: 1.35 <-
ch4 = 0
ARCFail = 1
relay5 = OK
relay1buffer = OK
time1 = 2

-> Input: 1.36 <-
-> State: 1.36 <-
ch1 = 0
ARCFail = 0
relay2 = OK
relay3 = OK
relay4 = OK
relay5 = alarm
relay2buffer = OK
relay3buffer = OK
relay4buffer = OK
time1 = 0

-> Input: 1.37 <-
-> State: 1.37 <-
relay5 = OK
relay6 = OK
time2 = 0
time3 = 0
time4 = 0

23

References

[1] GTKWave 3.0 Wave Analyzer User’s Guide, April 2006.

[2] Model Checking at Carnegie Mellon University. A perl script to convert an
smv/nusmv counterexample to industry standard value change dump (vcd)
format. Available in http://www.cs.cmu.edu/∼modelcheck/.

[3] Boolean Satisfiability Research Group at Princeton. SAT research at
princeton. http://www.princeton.edu/∼chaff/.

[4] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. In Advances in Computers (volume 58). Academic Press, 2003.

[5] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and
Alexander Pretschner, editors. Model-Based Testing of Reactive Systems,
Advanced Lectures [The volume is the outcome of a research seminar that
was held in Schloss Dagstuhl in January 2004], volume 3472 of Lecture
Notes in Computer Science. Springer, 2005.

[6] Randal E. Bryant. Graph-based algorithms for boolean function manipu-
lation. IEEE Transactions on Computers, 35(8):677–691, 1986.

[7] Roberto Cavada, Alessandro Cimatti, Charles Arthur Jochim, Gavin
Keighren, Emanuele Olivetti, Marco Pistore, Marco Roveri, and Andrei
Tchaltsev. NuSMV 2.4 User Manual. ITC-irst, http://nusmv.irst.itc.
it/.

[8] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco
Roveri. NUSMV: A new symbolic model verifier. In Computer Aided Ver-
ification, pages 495–499, 1999.

[9] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Progress on the state explosion problem in model checking. Lecture Notes
in Computer Science, 2000:176–194, 2001.

[10] Orna Grumberg Doron A. Peled Edmund M. Clarke, Jr. Model Checking.
The MIT Press, 1999.

[11] IEEE. IEEE Standard Hardware Description Language Based on the Ver-
ilog Language. The Institute of Electrical and Electronic Engineers, Inc.,
New York, NY, 1996.

[12] David K. Probst and Hon F. Li. Using partial-order semantics to avoid the
state explosion problem in asynchronous systems. In Edmund M. Clarke
and Robert P. Kurshan, editors, CAV, volume 531 of Lecture Notes in
Computer Science, pages 146–155. Springer, 1990.

[13] P. S. Thiagarajan and Jesper G. Henriksen. Distributed versions of linear
time temporal logic: A trace perspective. In Petri Nets, pages 643–681,
1996.

[14] William G. Wood. Temporal logic case study. In Automatic Verification
Methods for Finite State Systems, pages 257–263, 1989.

24

