
Implementing Preprocessing Transformations for
Smodels Extended Rules

Axel Eirola

6th October 2008

Abstract

We examine the utilisation of known syntactic transformations of Answer Set
Programming (ASP) for preprocessing programs written with extended rules of
the smodels format. As an byproduct we also introduce a candidate for a canon-
ical form for representing said rules. In addition we examine the performance
benefit given by the transformation on solvers supporting the smodels format,
in this paper focusing on smodels and clasp.

1 Introduction

With the application of smodels [7] based solving in many fields combined with the
availability and usage of various logic program translators we often encounter logical
programs in a unoptimised representation, be it either because of machine transla-
tions, or lack of resources for thorough optimisations by hand. To tackle the issue of
decreased performance of poor encodings usage of preprocessing is advised, but still
nearly all available Answer Set Programming (ASP) [6] solvers lack the ability.

Building on previous studies [2] of simplifying transformations for ASP and in-
spired by the recent work by Gebser [4] we seek to find an efficient and widely appli-
cable way to speed up solving of smodels formatted ASP problems with any compatible
solver by reducing the given program to a simplified more optimised, yet equivalent,
representation before handing it over to the solver. The function is largely similar of
that which has been done inside clasp [3], but the method rather different. The basic
idea is to implement known ASP rule transformations for the three extended smodels
rule types and search the given program for set of rules with specific attributes, and
with the help of the predetermined transformations simplify these to more efficient
representations. With the help of these simplifications we hope that the implemen-
tation of this technique in our tool simplify [1] will enable us to in deterministic
polynomial time reduce the exponential runtime of the actual problem solving.

Additionally we introduce a very simple canonical form for easily representing and
sorting rules in smodels format. The original usage for this normalisation was for
increasing internal performance of the implementation in simplify , but it may also
be used for wider applications.

1

2 Background

Striving to use a similar notation to both lparse and smodels [8] internal formats we
define a logic program P as a triple (R, O, C) containing rules, output atoms and
compute statements respectively. Rules consist of a head and optionally empty body,
heads consisting of atoms, and bodies of literals (an atom with an optionally preceding
negation). Atoms have both a unique textual name (a) , and identifying integer (#a).
Rules can be one of four types, basic rules, constraint rules, choice rules and weight
rules, denoted as following:

Basic rule: a← b1, . . . , bp, not bp+1, . . . , not bn

Choice rule: {a1, . . . , ah} ← b1, . . . , bp, not bp+1, . . . , not bn

Constraint rule: a← l{b1, . . . , bp, not bp+1, . . . , not bn}
Weight rule: a← l[b1 = w1, . . . , bp = wp, not bp+1 = wp+1, . . . , not bn = wn]

The output atoms O is a set of atoms that are shown to the user and specify the
solution to the problem at hand, in this paper they only appear in situations where it
is essential to keep a redundant rule to retain definitions for output atoms. A compute
statement provides a set of literals (C = {c1, . . . , cp, not cp+1, . . . , not cn}) that are
required to be true in all stable models.

For the sake of saving space we will use the following shorthands for commonly
used sets and elements:

H = {a1, . . . , ah}
B+ = {b1, . . . , bp}
B− = {bp+1, . . . , bn}
not B− = {not bp+1, . . . , not bn}
B = B+ ∪ not B−

W = w1, . . . , wn

C+ = {c1, . . . , cp}
C− = {cp+1, . . . , cn}
h(r): The head of a rule r

B(r): The body of a rule r

w(a): Weight of atom a

W (B): List of weights for body B

3 Normalisation

Simplify uses a canonical form for representing rules to speed up comparisons as well
as sorting and search algorithms. The canonical form is similar to that of the smodels
file format with the special requirement that all integer representations of atoms in the
head, negative body and positive body must be in ascending order. More formally:

2

1 #a (p + n) n #b1 . . . #bp #bp+1 . . . #bn

2 #a (p + n) n l #b1 . . . #bp #bp+1 . . . #bn

3 h #a . . . #bh(p + n)n#b1 . . . #bp #bp+1 . . . #bn

5 #a l (p + n) n #b1 . . . #bp #bp+1 . . . #bn wp+1 . . . wp+n w1 . . . wp

where

#a1 < . . . < #ah

#b1 < . . . < #bp

#bp+1 < . . . < #bn

Notice how the canonical form requires that there are no duplicate literals in the
positive nor negative bodies, therefore duplicates are removed at program input and
in the case of weight rules the sum of weights of the duplicate pair is set as the weight
of the remaining literal.

4 Transformations

In the following we present the simplifications as they are used in the tool simplify.
They are mostly based on the special case of single-atom heads for transformations
addressed in [2] and implemented for the three additional rules of the smodels format.
Note that for clarity the programs are here represented as sets of rules, and bodies as
sets of literals, implying that no duplicates exist, therefore we do not address them
here although they are properly taken care of in the tool implementation.

4.1 Trivialities

Trivial instances of non-basic rules can be reduced to simpler notation without loss
of information, this includes constraint and weight rules with trivial or unsatisfiable
limits.

Transformation Condition

R′ = R \ {H ← B} |H| = 0

R′ = (R \ {h← l{B}}) ∪ {h} l = 0
R′ = (R \ {h← l{B}}) ∪ {h← B} l = |B|
R′ = R \ {h← l{B}} l > |B|

R′ = (R \ {h← l[B]}) ∪ {h} l = 0
R′ = (R \ {h← l[B]}) ∪ {h← B}

∑
W (B)−min{w(b)|b ∈ B} < l

R′ = (R \ {h← l[B]}) ∪ {h← 1{B}} l < min{w(b)|b ∈ B}
R′ = R \ {h← l[B]} l >

∑
W (B)

R′ = (R \ {h← l[B]}) ∪ {h← d l
we{B}} ∀w′ ∈W (B) : w′ = w

Table 1: Trivial transformations

3

4.2 Contradictions

Contradiction transformations build upon the logical fact that if the positive and the
negative body contains a common atom one of the literals has to be true and the other
one false, allowing us to remove the whole rule, as the body can never be satisfied.

Transformation Condition

R′ = R \ {h← B} B+ ∩B− 6= ∅
R′ = R \ {H ← B} B+ ∩B− 6= ∅

Table 2: Transformations for rules with a contradictory body

4.3 Tautologies

Positive literals occurring in both the head and the body of a rule means that for the
head to be true it must already be true in the body, resulting in the head atom being
redundant.

Transformation Condition

R′ = R \ {h← B} h ∈ B+

R′ = (R \ {H ← B}) ∪ {H \B ← B} H ∩B+ 6= ∅

R′ = (R \ {h← l{h, B}}) ∪ {h← l{B}}
R′ = (R \ {h← l[h, B]}) ∪ {h← l[B]}

Table 3: Tautological transformations

4.4 Compute statements

Literals in compute statements existing in bodies of rules can in many cases be preemp-
tively evaluated. The limitation being that positive literals cannot safely be removed
from bodies while retaining equivalence, shown by the simple example of

a← b.

b← a.

compute{a}.

4

Transformation Condition

R′ = R \ {h← B} B+ ∩ C− 6= ∅
R′ = R \ {h← B} B− ∩ C+ 6= ∅
R′ = R \ {h← not a, B} ∪ {h← B} a ∈ C−

R′ = R \ {H ← B} B+ ∩ C− 6= ∅
R′ = R \ {H ← B} B− ∩ C+ 6= ∅
R′ = (R \ {H ← not a, B}) ∪ {h← B} a ∈ C−

R′ = (R \ {h← l{not a, B}}) ∪ {h← l{B}} a ∈ C+

R′ = (R \ {h← l{not a, B}}) ∪ {h← min(0, l − 1){B}} a ∈ C−

R′ = (R \ {h← l[not a = w, B]}) ∪ {h← l[B]} a ∈ C+

R′ = (R \ {h← l[not a = w, B]}) ∪ {h← min(0, l − w)[B]} a ∈ C−

Table 4: Compute transformations

4.5 Non-minimal

A rule that defines the same head as an existing rule, but requiring more literals to
be satisfied, can in most cases be removed, as the smaller rule defines the head in all
cases for which the larger rule defines it.

Transformation Condition

R′ = R \ {h← B2} ∃(h← B1) ∈ R : B1 ⊂ B2

R′ = (R \ {h1, H2 ← B2}) ∪ {H2 ← B2} ∃(h1 ← B1) ∈ R : B1 ⊆ B2

R′ = (R \ {H2 ← B2}) ∪ {H2 \H1 ← B2} ∃(H1 ← B1) ∈ R : B1 ⊆ B2,
H1 6= H2

∨
B1 6= B2

R′ = R \ {h← B2} ∃(h← l{B1}) ∈ R : l ≤ |B1 ∩B2|
R′ = R \ {h← l2{B2}} ∃(h← l1{B1}) ∈ R : B2 ⊆ B1, l1 ≤ l2,

B1 6= B2
∨

l1 6= l2

R′ = R \ {h← B2} ∃(h← l[B1]) ∈ R : l ≤
∑

W1(B1 ∩B2)
R′ = R \ {h← l2[B2]} ∃(h← l1[B1]) ∈ R,∀b ∈ B2 : w2(b) ≤ w1(b),

B2 ⊆ B1, l1 ≤ l2, B1 6= B2
∨

l1 6= l2

Table 5: Non-minimal transformations

4.6 Literal non-minimal

Head atoms occurring in bodies alongside their defining bodies can be evaluated to
true or false due to the fact that the head atom must always be true if the rest of the
body, including its defining body, is true.

5

Transformation Condition

R′ = (R \ {h2 ← h1, B1, B2} ∪ {h2 ← B1, B2} ∃(h1 ← B1) ∈ R
R′ = (R \ {H2 ← h1, B1, B2} ∪ {H2 ← B1, B2} ∃(h1 ← B1) ∈ R

R′ = (R \ {h2 ← not h1, B1, B2} ∃(h1 ← B1) ∈ R
R′ = (R \ {H2 ← not h1, B1, B2} ∃(h1 ← B1) ∈ R

Table 6: Literal non-minimal transformations

4.7 Partial evaluation

Uniquely defined heads appearing in bodies of other rules can be evaluated by replac-
ing their occurrence with the body defining the head. This would also be possible for
non-unique heads, but it results in an increased number of required rules, therefore
not contributing to simplifying the program as a whole.

Transformation Condition

R′ = (R \ {h2 ← h1, B2}) ∪ {h2 ← B1 ∪B2} unq(h1)1 = h1 ← B1

R′ = (R \ {H2 ← h1, B2}) ∪ {H2 ← B1 ∪B2} unq(h1) = h1 ← B1

R′ = (R \ {h2 ← not h1, B2}) ∪ {h2 ← not b1, B2} unq(h1) = h1 ← b1

R′ = (R \ {H2 ← not h1, B2}) ∪ {H2 ← not b1, B2} unq(h1) = h1 ← b1

R′ = (R \ {h2 ← l{h1, B2}}) ∪ {h2 ← l{b1, B2}} unq(h1) = h1 ← b1

R′ = (R \ {h2 ← l{not h1, B2}}) ∪ {h2 ← l{not b1, B2}} unq(h1) = h1 ← b1

R′ = (R \ {h2 ← l[h1 = w, B2]}) ∪ {h2 ← l[b1 = w, B2]} unq(h1) = h1 ← b1

R′ = (R \ {h2 ← l[not h1 = w, B2]}) ∪ {h2 ← l[not b1 = w, B2]} unq(h1) = h1 ← b1

R′ = (R \ {h2 ← l{h1, B2}}) ∪ {h2 ← l{not b1, B2}} unq(h1) = h1 ← not b1

R′ = (R \ {h2 ← l[h1 = w, B2]}) ∪ {h2 ← l[not b1 = w, B2]} unq(h1) = h1 ← not b1

R′ = (R \ {h2 ← l{h1, B2}}) ∪ {h2 ← min(0, l − 1){B2}} unq(h1) = h1 ←
R′ = (R \ {h2 ← l{not h1, B2}}) ∪ {h2 ← l{B2}} unq(h1) = h1 ←
R′ = (R \ {h2 ← l[h1 = w, B2]}) ∪ {h2 ← min(0, l − w)[B2]} unq(h1) = h1 ←
R′ = (R \ {h2 ← l[not h1, B2]}) ∪ {h2 ← l[B2]} unq(h1) = h1 ←

R′ = R \ {h← B} ¬∃ r ∈ R : h /∈ O,
h ∈ B+(r)

∨
not h ∈ B−(r)

Table 7: Partial evaluation transformations

1unq(h) = r, if ∃! r ∈ R : h(r) = h

6

5 Experiments

Conducted performance experiments are divided into two categories. One observing
the individual effects of transformations on solving time in search for a safe set of
transformations that only positively effects the performance. The second category of
tests focuses on the combined effort of transformations considered safe to benchmark
the actual benefit of the method. All tests were run with smodels version 2.32 (restarts
enabled) and clasp version 1.05 on a 2.0 GHz Linux system with 3GB RAM, test
instances were picked from the SLparse category in the ASP-competition [5].

Test original tcTC 2 Non-min Partev Litnonmin

Blocked N-Queens 36.24 35.79 33.19 36.88 36.43
Factoring 27.66 27.41 27.53 34.2 27.28
Hamiltonian Path 28.74 28.92 25.68 17.68 28.8
Hashiwokakero 3.57 3.54 3.42 3.55 3.53
Knights Tour 2.28 2.25 2.26 2.31 2.24
Random Non Tight 32.26 23.63 33.15 33.42 32.82
RLP-150 5.51 4.75 5.48 3.52 6.24
Schur 10.61 10.52 4.43 10.68 10.6
searchTest plain 13.68 12.47 12.75 13.03 13.06
searchTest verbose 51.68 49.77 47.69 215.31 51.52
Social Golfer 1.02 1.35 0.96 1.15 0.82
Solitaire Backward 1.16 1.17 1.16 1.17 1.16
Solitaire Forward 9.22 17.93 10.93 29.59 10.27
Su-Doku 29.07 29.16 14.88 29.74 29.6
Towers Of Hanoi 76.85 72.27 78.16 79.24 73.51
verifyTest 0.53 0.52 0.5 0.48 0.52
Weighted Spanning Tree 243.35 240.48 228 234.92 242.2

Table 8: Transformation tests

In table 8 is displayed the average runtimes for smodels with original problem
encoding and after different transformations, average was obtained by running one
instance of each test nine times shuffled. The used tests were chosen because of their
stable runtime with smodels. As can be seen all transformations except for partial
evaluation either decreases or does not significantly impact performance, whereas
partial evaluation behaves more erratically and can therefore not be considered safe.

The actual reason for the reduced performance of partial evaluations is hidden
in the inner workings of the model solvers and outside the scope of this document.
Speculating on the resons we encounter a possible explanation that the removed atoms
in some significant way divide the search space giving the solver a good choice point
for making its decisions. In this case an analysis of the nature of the transformation
to be done seems much more expensive than the actual benefit available from the
simplification.

2Trivialities, Contradictions, Tautologies and Compute statements

7

Alltough partial evaluation is considered unsafe it is not useless, as it in certain
cases greatly decreases solving time. Exploiting problem specific program structure
we can determine effectiveness of certain transformations on small instances of said
problem and witness similar behaviour in larger instances.

Problem s rules smodels clasp
orig. simp. orig. simp. orig. simp.

15-Puzzle 0.2 38250 38250 300.055 300.055 191.316 167.511

Blocked N-Queens 0.1 5024 4877 57.2 51.4 12.7 29.12

Bounded Spanning Tree 6.1 206557 197376 241.031 240.632 5.9 5.8
Car Sequencing 0.0 1582 1497 300.055 300.055 300.055 296.954

Factoring 0.0 7685 7685 8.9 8.7 9.6 9.3
Hamiltonian Cycle 0.0 10502 10502 181.430 163.728 0.2 0.3
Hamiltonian Path 0.0 4924 3499 179.631 159.527 0.1 0.1
Hashiwokakero 7.9 1077971 1062342 181.029 180.831 112.215 101.512

Knights Tour 0.4 58062 58062 48.8 50.0 0.9 0.9
Random Non Tight 0.0 848 796 72.14 56.62 29.64 8.7
RLP-150 0.0 735 728 3.9 4.0 0.4 0.4
RLP-200 0.0 793 786 31.1 24.0 1.1 1.1
Schur 1.4 85319 43187 242.144 240.944 110.415 97.012

searchTest plain 29.6 690808 633670 80.211 78.311 87.514 108.718

searchTest verbose 34.2 802803 736548 133.811 121.211 78.98 42.52

Social Golfer 0.2 31506 31219 180.433 185.934 60.811 60.811

Solitaire Backward 0.1 20508 20508 209.938 186.333 3.4 4.8
Solitaire Backward 2 0.2 27435 21580 292.053 296.653 189.427 164.324

Solitaire Forward 0.1 19606 19606 71.611 91.214 55.310 60.010

Su-Doku 33.4 1003593 503593 30.5 15.6 50.44 19.61

Towers Of Hanoi 0.1 18340 14728 206.429 197.625 36.32 33.8
Traveling Salesperson 0.0 3825 3825 137.724 150.826 0.5 0.3
verifyTest 0.1 12914 12190 0.5 0.5 0.2 0.2
Weight Bounded Dom. Set 0.0 3163 3163 298.353 300.055 134.124 129.120

Weighted Latin Square 0.0 997 781 256.041 262.544 0.0 0.0
Weighted Spanning Tree 2.0 112034 106186 255.634 211.122 3.6 3.4

Table 9: Benchmark results

Actual performance results are included in table 9 where the full test suite of
the ASP-competition is utilised to give an overview of the impact on performance
the safe transformations have on solvingtime with both smodels and clasp. For each
problem five instances (except for Factoring 4, and Su-Doku 3) were run eleven times
shuffled, with a timeout of 300 seconds. All available transformations except for
partial evaluation were used. In the table s shows the average time in seconds taken
by simplify, rules the average number of rules in the problem, smodels the average
runtime for smodels and clasp the average runtime for clasp. The lefthand side value is
for the original instance, and righthand side value for the simplified instance. Number
of timeouts are shown as subscript after the value.

As we can notice not all problems can be efficiently simplified as there is always a
limit on how efficiently a problem can be represented. But we still see a noticeable im-
provement in some of the cases. Comparing runtimes of clasp we can see that it is not
as prone to improvement by simplification as smodels, mainly due to its already im-

8

plemented internal preprocessing and SAT-based solving techniques. Despite this we
can still see improvements in a few problems implying that there are transformations
done in simplify not detected by the internal preprocessing of clasp.

6 Conclusions

We presented an alternative approach to simplifying logic programs with a smodels
specific rulebase, in comparison to the work done on clasp. On the basis of conducted
experiments we have shown the effectiveness and usefullness of listed transformations
on real world problems. Our tool simplify, implementing the presented simplifica-
tions, is the first look at external independent ASP-specific optimising preprocessors.
With further development and experimentation in combination with other tools it can
contribute to positive results outside the scope of this document.

References

[1] A. Eirola. simplify. http://www.tcs.hut.fi/~aeirola/simplify.tar.gz.

[2] T. Eiter, M. Fink, H. Tompits, and S. Woltran. Simplifying logic programs under
uniform and strong equivalence. In LPNMR, pages 87–99, 2004.

[3] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. lasp : A conflict-driven
answer set solver. In LPNMR, pages 260–265, 2007.

[4] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Advanced preprocessing
for answer set solving. In ECAI, pages 15–19, 2008.

[5] M. Gebser, L. Liu, G. Namasivayam, A. Neumann, T. Schaub, and M. Truszczyn-
ski. The first answer set programming system competition. In LPNMR, pages
3–17, 2007.

[6] V. W. Marek and M. Truszczynski. Stable models and an alternative logic pro-
gramming paradigm. CoRR, 1998.

[7] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable
model semantics. Artif. Intell., 138(1-2):181–234, 2002.

[8] T. Syrjänen. Lparse 1.0 User’s Manual. Available form the smodels website
http://www.tcs.hut.fi/Software/smodels/lparse.ps.

9

http://www.tcs.hut.fi/~aeirola/simplify.tar.gz
http://www.tcs.hut.fi/Software/smodels/lparse.ps

	Introduction
	Background
	Normalisation
	Transformations
	Trivialities
	Contradictions
	Tautologies
	Compute statements
	Non-minimal
	Literal non-minimal
	Partial evaluation

	Experiments
	Conclusions

