T-79.4501 Cryptography and Data Security

Kaisa Nyberg, professor Billy Brumley and Jukka Valkonen, assistants

General

- http://www.tcs.hut.fi/Studies/T-79.4501/
- Course agenda
 - 12 lectures in Finnish à 2 hours, Tue, Thu 12-14 (no lecture on Feb 7 and Feb 14)
 - 6 exercise sessions, two groups:
 - Group 1(Finnish) Mon 12-14
 - Group 2 (English) Wed 12-14
- 4 credits, requirements: Exam (max 30 pts)
- Exams: Monday, the 6th of March, at 13-16 in T1
 Friday, the 12th of May, at 13-16 in T1
- Up to 6 exam bonus points can be obtained from active participation in exercise group.

Textbook

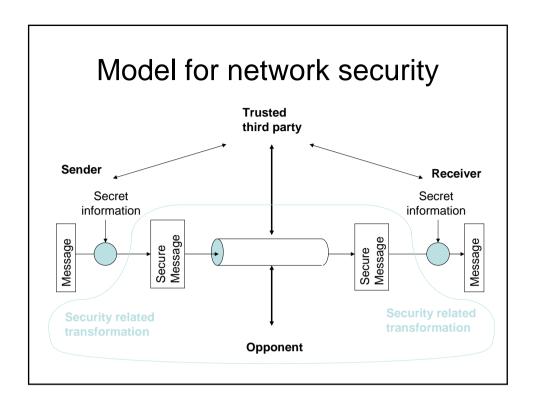
Cryptography and Network Security, Principles and Practices, by W. Stallings. Third edition. Pearson Education 2003. ISBN 0-13-091429-0

Other useful books:

- Handbook of Applied Cryptography, by A.J.Menezes, P.C.van Oorschot, S.A.Vanstone, CRC Press
- Network Security, Private Communication in a Public World, by C. Kaufman, Radia Perlman, Mike Speciner. Second edition, Prentice Hall 2002, ISBN 0-13-046019-2
- UMTS Security, by V. Niemi and K. Nyberg, Wiley 2002, ISBN 0-470-84794-8

Contents

- Introduction to data security
- Classical cryptosystems
- Introduction to modern cryptography
- Block ciphers: DES, IDEA, AES
- Stream ciphers: RC4, and other examples
- · Block cipher modes of operation
- Hash-functions and MACs
- arithmetic, Euclid's algorithm, Chinese Remainder Theorem, Euler's totient function, Euler's theorem


- Public key cryptosystems: RSA
- Prime number generation
- Polynomial arithmetic
- Public key cryptosystems: Diffie-Hellman, El Gamal, DSS
- Authentication and Digital signatures
- Random number generation
- Mathematical tools: Modular Authentication and key agreement protocols in practise: PGP, SSL/TLS, IPSEC, IKEv2 and EAP

Lecture 1: Introduction to data security

- General security principles
- Communication security
- Design of a secure system
- Example: GSM security

What is Security?

- Security is an abstract concept
- Security is about protection methods against deliberate misbehaving actions
- Security in not fault-tolerance and robustness
- There is a distinction between physical security and information security.
- Physical security
 - locked rooms, safes and guards
 - tamper-resistance
 - proximity
 - biometric protection
 - identification based on physical appearance

Threat model

- Another way of defining security
 - First perform threat analysis: cababilities of an attacker, possible attack scenarios
 - Security can then be defined in terms of combatting the perceived threats
 - Not all threats are worth of combatting
- Dolev-Yao attacker model against cryptographic protocols: An attacker
 - Is a legitimate user of the network, and hence able to correspond with any other user
 - Can send messages to another user by impersonating any other user
 - Can receive messages intended to any other user

Computer and Communication Layers Security

System level security

"The system is as strong as its weakest link."

Application security

e.g. banking applications over Internet use security mechanisms which are tailored to meet their specific requirements.

Protocol level security

well-defined communication steps in certain well-defined order.

Operating system security

the behaviour of all elements in a network depends on the correct functionality of the operating system that controls them.

Platform security

properties of the computing platform, e.g. protected memory space.

Security primitives

these are the basic building blocks, e.g. cryptographic algorithms.

Design of a Secure System

Threat analysis

What are the threats?

Risk analysis

What is the potential damage each threat potentially can cause?

Trust model

Whom and what can be trusted?

Requirements capture

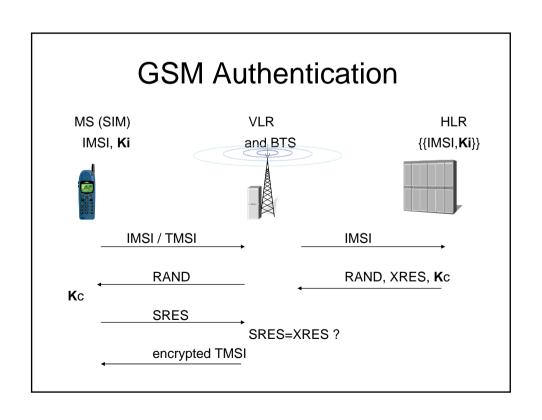
What kind of protection is required? What kind of protection is possible within the trust model?

Design phase

Protection mechanism are designed in order to meet the requirements. Building blocks, e.g. security protocols or primitives are identified, possibly new mechanisms are created, and a security architecture is built.

Security analysis

Evaluation of the design independently of the design phase.


Reaction phase

Reaction to expected security breaches and survival plan.

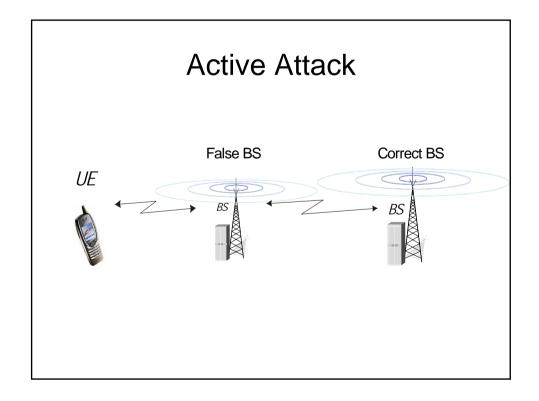
Example: GSM Security

Main features

- · Authentication of the user
 - > correct billing
- Encryption of communication over the radio interface
 - > confidentiality of user and control data
 - > call integrity
- Use of temporary identities
 - user privacy
 - location privacy

Criticism

Active attacks


 this refers to somebody who has the required equipment to masquerade as a legitimate network element and/or legitimate user terminal

Missing or weak protection between networks

 control data, e.g. keys used for radio interface ciphering, are sometimes sent unprotected between different networks

Secret design

 some essential parts of the security architecture are kept secret, e.g. the cryptographic algorithms

Barkan-Biham-Keller Attack (2003)

Exploits weaknesses in cryptographic algorithms:

- A5/2 can be instantly broken
- ... AND other fundamental flaws in the GSM security system:
 - A5/2 was a mandatory feature in handsets
 - Call integrity based on an (weak) encryption algorithm
 - The same Kc is used by different encryption algorithms
 - Attacker can force the victim MS to use the same Kc by RAND replay

Two types of attacks:

- 1. Decryption of strongly encrypted call using ciphertext only
 - Catch a RAND and record the call encrypted with Kc and A5/3 (= strong encryption algorithm)
 - Replay the RAND and tell the MS to use A5/2 (= weak encryption alg.)
 - Analyse Kc from the received encrypted uplink signal
- 2. Call hi-jacking
 - Relay RAND to victim MS and tell it to use A5/2
 - Analyse Kc from the received signal encrypted by the victim MS
 - Take Kc into use and insert your own call on the line

Proposed Countermeasure

Amendment to the GSM security architecture: Special RANDs

- RAND is the only variable information sent from Home to MS in the authentication
- Divide the space of all 128-bit RANDs into different classes with respect to which encryption algorithm is allowed to be used with the Kc derived from this RAND.
- 32-bit flag to indicate to the MS that a special RAND is in use
- 16-bits to indicate which algorithms out of 8 GSM (and ECSD) and 8 GPRS encryption algorithms are allowed to be used with the key derived from this special RAND
- Effective RAND reduced from 128 bits to 80 bits. Remains to be judged if acceptable.
- Special RANDs trigged by the visited network identity. Requires careful configuration in the HLR/AuC.
- Solution assumes that HLR gets the correct VLR identifier.

Lessons learnt

- Use independent keys for different algorithms so that a key captured from one broken algorithm cannot be used to compromise security of another algorithm.
- Use strong crypto only
- Active man-in-the-middle attacks in wireless communication must be taken seriously
- Amendements to existing security system extremely difficult to implement:
 - updates to existing devices
 - backwards compatibility
 - version negotiation hard to protect (bidding down attacks)