Here is a small example to illustrate division of polynomials for homework 2, excercise 1b. The task was to use Extended Euclidean algorithm to compute inverse of $x^{3}+x \bmod x^{5}+x^{2}+x^{1}$.

Now, the setup is $r_{0}=x^{5}+x^{2}+1$ and $r_{1}=x^{3}+x$, and first we are trying to solve q_{2} and r_{2}, so that $r_{0}=q_{2} \cdot r_{1}+r_{2}$.

\[

\]

As calculations are performed $\bmod 2$, there is no need to separate addition and subtraction.

So, we get $q_{2}=x^{2}+1$ and $r_{2}=x^{2}+x+1$. This can be verified: $\left(x^{2}+1\right) \cdot\left(x^{3}+x\right)+\left(x^{2}+x+1\right)=\left(x^{5}+x^{3}+x^{3}+x\right)+\left(x^{2}+x+1\right) \equiv x^{5}+x^{2}+1$.

