1. Consider the following three LTSs L_1, L_2, and L_3:

$L_1 : \quad \Sigma_1 = \{a, b, c\}$

$L_2 : \quad \Sigma_2 = \{b, c\}$

$L_3 : \quad \Sigma_3 = \{a, b\}$

a) Compute the parallel composition $L = L_1 \parallel L_3$.

b) Does $L = L_1 \parallel L_3$ contain any conflicts? If it does, please give a list consisting of triples (v, t, t'), where v is a global state of L where a conflict occurs and t, t' are a pair of global transitions of $L_1 \parallel L_3$ which are in conflict in v.

c) Does $L = L_1 \parallel L_3$ contain any deadlocks? If it does, please give a list of global states of L which are deadlocks.

d) Does $L = L_1 \parallel L_3$ contain any livelocks? If it does, please give a list of a global state of L in which a livelock exists.
e) Does \(L = L_1 \| L_3 \) contain a pair of independent transitions? If it does, give two global transitions which are independent.

f) Give \(traces(L_3) \) as a list of sequences over \(\Sigma_3 \).

g) Give \(traces(L_1) \) as a regular expression.

h) Give a deterministic finite automaton accepting \(\Sigma_1^* \setminus traces(L_2) \).

i) Check whether \(traces(L_1) \subseteq traces(L_2) \) using the automaton constructed in the previous step. If not, give a word in \(traces(L_1) \setminus traces(L_2) \).