
T–79.4301 Spring 2008
Parallel and Distributed Systems
Tutorial 2 - Mon Feb 4, 14:15

1. Hyman suggested in 1966 the following algorithm to solve the mutual
exclusion problem. Use a maximum of 10 minutes of time and see
whether you can in that time manually analyse whether it guarantees
mutual exclusion:

// Hyman’s algorithm, two parallel processes 0 and 1

var want: array[0..1] of boolean; // want[0..1] initially false
var turn: int; // turn initialised to 0

// Pseudocode for process i

process P():
var i, j: int; // i is my index, j is the other process
i := mypid(); j := 1-mypid();
while true do

// [noncritical section]

want[i] := true;
// [trying section]
while true do

if(turn != i) then begin
while true do

if(!want[j]) then begin
turn := i;
break;

endif;
enddo;

end;
else begin

// [critical section]

want[i] := false;
break;

end;
enddo;

enddo;
endprocess;



2. Demo exercise: Model Hyman’s algorithm in Promela, and use the Spin
model checker to check whether it is correct.

3. The following buggy mutex algorithm was suggested by a major com-
puter manufacturer. Use a maximum of 10 minutes of time and see
whether you can in that time manually find an execution which leads
to both processes being in the critical section at the same time. (Don’t
worry too much if you have to give up.)

// Buggy mutex algorithm, two parallel processes 0 and 1
var x: int; // x initialised to 0
var y: int; // y initialised to 0
var z: int; // z initialised to 0

// Pseudocode for process i
process P():

var me: int;
me := mypid()+1; // me is either 1 or 2
while true do

// [noncritical section]
while true do

// [trying section]
x := me;
// Assume atomic execution of (y != 0 and y != me)
if(y != 0 and y != me) then

continue;
endif;

z := me;
if(x != me) then

continue;
endif;

y := me;
if(z != me) then

continue;
endif;

// [critical section]
break;

enddo;
enddo;

endprocess;


