T-79.4301 Spring 2008
Parallel and Distributed Systems
Tutorial 8 — Solutions

1. a) LetMy = (S, 0, Ra, L), where
Vv

22{80}, )
=5, _
R.— 0, and T‘L {p.a} J

L(so) = {p,q}.

The Kripke structuréVl; has the unique executiamy = s, which corre-
sponds to the execution patihh = L(sp) = {p,q}. We check thaMs =G p
holds. (Throughout the discussion, we denote the lengtliioita sequence
x by |x|: for example|o1| = |Ty| = 1 in this case.)

Ma=Gp
iff 1= G p for all execution pathstin M, (semantics of=)
iff TuEGp (M, has the unique execution patt)
iff 10 }=pforal0<i< |m] (semantics o6)
iff ™}p (| =1)
iff pel(s) (semantics of=)
iff pe{p,q} (definition of=)

Becausep € {p,q} holds,M, = G p holds. Similarly,

Mal=G(p=0)
iff 1= G (p=q) for all execution pathstin M, (semantics of=)
iff TmEG(p=0) (Ma has the unique execution paiti)
iff Tli1 Ep=qforal0<i< |m| (semantics o6)
iff ™Ep=q (| =1)
iff 0= (-p)Vvq (semantics of>)
iff T E=-pormE=q (semantics of/)
iff 16 pormi=q (semantics of,)
iff pé¢L(s)orqeL(s) (semantics of=)
iff p¢{p,q}orqge{p,q} (definition of L)

Becausey € {p,q} holds, it follows thaiM, = G (p =- q) holds.



b) LetMp = (S, 2, Ry, Lp), Where

2 = {s0,s1}, (%] )
= o, L
={p.q
Ro = {(s0.51) }, § tp.a} )
L(s0) = {p.q}, and i
L(s1) = {a}. ) .
The Kripke structurd, has two executions; = (5]
S andoz = §s; corresponding to the execution L={a}
pathsy = L(sp) and o = L(sp)L(s1), respec- \ J
tively.
Mp =G p
iff not (Mp = Gp) (semantics of=)
iff not (Tt}= G p for all execution pathstin Mp) -
iff Tt~ G p for some execution patiiin My, A

In this case, we see tha [~ G p:

TGP
iff not (T, = Gp) (semantics of=)
iff not (i, = pforall0<i<|m) (semantics o)
iff 10, = p for some 0< i < || (semantics of=)
iff O porTs Ep (e =2)
iff pé&L(sp)orpéL(s) (semantics of=)
iff p¢{p,q}orp¢{q} (definition of L)

Becausep ¢ {q} = L(s1) holds, T, (£~ G p holds, and it follows thaMy, (=
Gp.

To check thatM, = G (pV Y q) holds, we need to check that bath =
G(pvYq) andm =G (pVY q) holdin the modeMy. This can be seen as
follows:

m=G(pvYQ)

iff M E=pvYqgforallO<i<|m| (semantics o6)
iff 1™ EpvYq (Im|=1)
iff T pEpormEYq (semantics of/)

Because € L(s0) = {p,q} (i.e., 1 = p) holds, it follows thaty = G (pV
YQ).



T =G(pVYaq)
iff 1 =pvYqforal0<i<|m| (semantics o6)
iff T }=pvYqgandg=pvYq (2| =2)
iff (15 = porm = Ya)and (B = porm = Yq) (semantics of/)
iff (10 = por(0>0andmd! = q))and

(T[% =por(1>0 andTl"zlfl Q) (semantics o)
iff (T = p)and (% = porm = q) (0%#0,1>0)

Because[p,q} C L(so) = {p,q} holds (i.e.,md = p and = ), it follows
that alsorp = G (pV 'Y Q). ThereforeMp =G (pVY Q).

c) LetM¢ = (S, 2, R, Lc), where =
& = {0,581, %}, T‘ L—0 J
L =5,

Re = {(s0,51), (S1,%2) } l
L(s0) =0,

L(s1) = {q}, and 51
L(s2) = {p.q}- ﬁ L= {a} J

The Kripke structureM. has three executions
01 = S, 02 = SS1 and oz = $$1Sp correspond-

ing to the execution pathsy = L(s), T = S2
L(so)L(s1) and 13 = L(sp)L(s1)L(sp), respec- L={p.q)

tively.

Mc =G (p= (aS-p))

iff =G (p=(qS—p))forallie{1,23} (semantics of=)
iff 1@ =p=(qS-p)forallic{1,2,3}and0< j< |m

. (semantics o6)
iff 1= (-p)Vv(qS—p)forallic{1,2,3}and0< j < |

_ _ (semantics of)
iff 1@ E=-porm =qS—pforallic{1,2,3} and0< j < |m|

_ _ (semantics of/)
iff 1@ porm =qS—pforallie{1,23}and0< | < |m

(semantics ofv)

Becausep ¢ L(sg) =0 andp ¢ L(s1) = {q} hold, it follows thatn'ij K p
holds for alli € {1,2,3} and 0< j < min{2,|m|}. Thereforem =G (p=
(qS—p)) andm =G (p=- (qS—p)) hold, andrr\l) = p=(qS—p) holds for
all j € {0,1}. Thusti = G (p= (qS—p)) (and thereforeM¢ = G (p =
(0S=p))) holds iff 1€ |= p= (4S—p).



% = p=(4S-p)
iff T[% K por T[% EqS—p (see above)
iff pé¢ L(sp) or (there exists an indexQ k < 2 such thatt = —p and

™ =qforallk<n<2) (semantics of=, S)
iff there exists an index & k < 2 such thatt = p andrg = g for all
k<n<?2 (p € L(s2) = {p,q}, semantics of=)

iff (T3}~ pandmg = qandrg = ) or

(T [~ p andTg |= q) or
(T[% = p) (k is one 00, 1,2)

Because ¢ L(so) = 0andp ¢ L(s1) = {q} (i.e., 13 = p andTg j p) hold,
butqe L(s1) andg e L(s2) = {p,q} (i.e., T3 = gandré = ) hold, it follows
that the above condition is satisfied. Therefagg= p = (qS—p), and it
follows thatM¢ = G (p= (qS—p)).

As above, becausp ¢ L(sp) andp ¢ L(s1), it is easy to check thaﬂqj E
p=-YY =pholds for alli € {1,2,3} and 0< j < min{2,|m|}. Therefore,
Mc =G (p=YY —p) holds iff 3 = p=YY —p.

= p=YY-p
iff T[% E(=p)VYY-p (semantics of>)
iff TBE-pormEYY-p (semantics of/)
iff T[% por(2>0 andn%‘l EY-p) (semantics of,, Y)
iff pé¢L(s)ormEY-p (2> 0, semantics of=)
iff >0 andn%’l E=-p (p € L(s2) = {p,q}, semantics of)
iff T[g K p (1> 0, semantics of:)
iff pé¢L(s) (semantics of=)

The result now follows becauges L(sp) = 0 holds by the definition of.

(This solution was designed for illustrating the semantitshe various
operators of the logic. A simpler solution is given by anypke model
which consists of a single state in which the atomic projpasi is false.)



d) LetMg = (S4,5), Ry, Lq), where

S = {s0,s1}, (%] )
% L—{a}
Ra = {(s0,51) },
L(so) ={q}, and b .
L(s1) =0. l
4 Y
The Kripke structurdly has two executions; = (5]
S andos = §s; corresponding to the execution L=0
pathsty = L(s9) and ™ = L(s)L(s1), respec- \ J

tively.

Suppose thatu = G (pSq) holds. In particular (by the semantics G,
T[% = pSq holds in this case, and there exists an indexi0< 1 such that
T, =0, andt, = p for all i < n < 1. Clearly,i = 0 is the only index such
that i, = q holds. Because ¢ L(s;) = 0, however, 13 = p, and thus it
cannot be the case tha} |= p for alli < n <1, contrary to the assumption.
Thereforemy (= G (pSq), and thus alstly [~ G (pSQ).

On the other hand,

Mg = GOq
iff Tt= GOqfor all execution pathstin Mgy (semantics of=)
iff g = GOgqforallie {1,2} (Mg has the execution pathg and )
iff Tl'ijl = Ogqforallie{1,2} and 0< j < |1g| (semantics o6)
iff 1@ = TSqforallic {1,2} and0< j < |m (semantics oD)
iff forall i € {1,2} and 0< j < |mg, & |= q for some 0< k < |, and
M E=Tforallk<n<j (semantics 08)
iff forall i €{1,2}and 0< j < ||, 7€ |= g for some 0< k < j, and
' =pVv-pforallk<n<j (semantics of’)
iff forall i €{1,2} and 0< j < |r§|, T |= g for some 0< k < j, and
(MEporm =-p)forallk<n<j (semantics o)

iff forall i €{1,2} and0< j < |mg|, T |= q for some 0< k < |
(" = p or " |= —p always holds for all k< n < j)

Because] € {q} = L(so) holds, it is easy to see thaf = q andm = q
hold, and thus the above requirement is satisfied in all éi@ctpaths in
Mg. ThereforeMy = GOQq holds.

We first characterise the finite words that are counterplesito the for-
mulad. Let T= XoX1...X, € (2*P)* be a finite word over the alphabet
2AP = {0, {alarm}, {crash}, {alarm,crash} }. The wordmis a counterex-
ample to the formul@, i.e., T}~ G (alarm=- O (crash),



iff not (1}= G (alarm=- O(crash))) (semantics of=)
iff not (forall0 <i <n: 1 |=alarm=- O(crash) (semantics o6)
iff not (forall0 <i<n: 1 = (-alarm)Vv O (crash)

(semantics of)
iff not (forall0 <i <n: (1t = —-alarmor 1 |= O (crash))

(semantics of/)
iff not(forall0<i<n: (Tl.j b~ alarm, or there exists an index9 j <i

such thatrd = crash)) . . (semantics of+, 0)
iff there exists an < i < n: (1t = alarm, andtt [~ crashfor all 0 <
j<i).

The counterexamples tpare therefore those finite words in which the sym-
bol {alarm} appears before a symbol that contains the atomic propositio
crash i.e., the words that match the regular expression

0*{alarm} (0U {alarm} U {crash} U {alarm, crash}) .

A deterministic finite automaton that accepts the countergxes tap can
thus read its input one symbol at a time until (i) the inputxkausted (in
which case the automaton will not accept its input), or (ilit encounters

a symbol that differs fromd. The automaton then enters one of two states in
which it simply consumes the rest of the input and either piscer rejects
the input word depending on whether the first input symbdéedsit from

0 was{alarm} or not.

0
Q
{alarm} {crash}, {alarm,crash}
O
0, {alarm},{crash}, 0, {alarm}, {crash},
{alarm, crash} {alarm, crash}

Suppose that we wish to check a system which consists dbtlosving
Promela process for violations of the safety propérfyom exercise 2:

bool alarm = fal se;
bool crash = fal se;

active proctype system() {



do
© true -> skip
;. crash = true; break

od;
crash = fal se;
alarm= true

}

It is easy to see that—in every execution of this system—#hiakleal ar m

will never have the valuer ue beforecr ash has been set tor ue at some
previous step. This system therefore satisfies the safetyepty ¢, which

expresses the requirement that a state in walieln mist r ue should always
be preceded by (or coincide with) a state in which the vagiabhsh has

the valuet r ue.

Since we already have a deterministic finite state automatoch accepts
violations of the safety property (see exercise 2), we wdakélto use this
automaton as a “monitor process” that observes the gloat ef the sys-
tem and reports a failure if the safety property is ever vema Obviously,
this requires coupling the monitor process with the systéranslating the
automaton from the previous exercise inoract ype definition, we obtain
the Promela code

active proctype monitor() {
do
;o ('alarm && !crash)
:: (alarm && !crash) -> assert(false)
;. (crash) ->
do
;1 true -> skip
od
od

}

The behaviour of this process mimics the behaviour of theraaton: the
outerdo-loop is executed until one of the global variabd¢sr mandcr ash
becomes true. Ifal arm && ! crash) is true, the monitor process executes
the assertion (reporting a failure); a¢f ash is true, the process enters an
infinite loop from which the assertion can no longer be reddsince it
becomes impossible to violate the safety property in thégla

However, analysing a model that consists of the definitidtisetwo above
processes yields an unexpected verification résult:

1The- DREACH option for the compiler and the option for the verifier are used only to opti-
mize the length of the counterexample. They are not necessancover the error.



$ spin -a 3. pn

$ cc -DREACH -0 pan pan.c

$ ./pan -i

hint: this search is nore efficient if pan.c is conpiled - DSAFETY
pan. assertion violated 0 (at depth 4)

pan: wote 3.pnl.trai

[...]
Analysing the error trail gives the following result:

$ spin -t -p 3.pnl
Starting systemwith pid 0
Starting nmonitor with pid 1

1 proc 0 (system) line 7 "3.pm" (state 3) [crash = 1]
2: proc 0 (system) line 9 "3.pm" (state 8) [crash = 0]
3: proc 0 (system) line 10 "3.pm" (state 9) [alarm = 1]
4: proc 1 (nonitor) line 16 "3.pm" (state 2) [((alarm&&! (crash)))]

spin: line 16 "3.pm", Error: assertion violated
spin: text of failed assertion: assert(0)
5: proc 1 (nmonitor) line 16 "3.pm" (state 3) [assert(0)]
spin: trail ends after 5 steps
#processes: 2
alarm=1
crash = 0
5: proc 1 (nmonitor) line 14 "3.pm" (state 10)
5: proc 0 (system) line 11 "3.pm" (state 10) <valid end state>
2 processes created
$

In this error trail, thesyst emprocess already reaches the end of its code
before theroni t or process takes even its first execution step. At this point,
the global variablesl ar mandcr ash have the valuesr ue andf al se, re-
spectively, which leads theoni t or process to execute the assertion state-
ment. Thus, ounoni t or process does not appear to work as intended: it
fails to observe that the variable ash was set td r ue at a previous step.

This verification result can be explained by examining thegosition of
the two processes the model checker Spin uses for verificakize control
structure of the two processes can be depicted as the folipwio extended
labelled transition systems in which we decorate the statdee “system”
LTS with the values of the global variables. The transitiohthe LTSs are
labelled with the expressions that appear in the Promela obdhe pro-
cesses. These expressions form the alphabets of the LT®sdlo process,
we use an alphabet that is disjoint from the alphabet of thergbrocess.
This is denoted by prefixing every expression used as an ladplsgmbol



with “s: ” or “m ” depending on whether the expression originates from the
system process or the monitor process.

m (!al arm&&! crash)

L0 (ratarmt crash] m (al ar me&! cr ash) JT0
s:crash=true m (crash)

s:true

s:skip
[lalarmlcrash] S 9 32 nalarmorash] my & massert(false) n
m skip
s: crash=fal se
mtrue
) 93 ['alarm!crash] rn3

s:al arnmetrue

® 4 [alarm!crash]

Zsystem= {S: true, s:skip, s:crash=true, s:crash=false, s:alarnrtrue}
Zmonitor= {m (! al ar m&&! crash) , m (al arn&&! crash), massert(false),
m (crash), mtrue, mskip}

The verifier analyses a structure which can be describedaslg) compo-
sition of the extended LTSs corresponding to the Promelegases. (When
forming the product of the extended LTSs, we consider aitiangeferring
to the global system variables in the monitor process to labled only if
the expression labelling the transition evaluates to tnuié current state
of the system LTS.) This parallel composition has the foltaystructure
(the solid lines correspond to transitions of #yst emprocess, the dashed
lines to transitions of theoni t or process):

m (!al armé&! crash)

s:true S '(SO, I’T'b) ['alarm!crash]

s:crash=true

[talarm!crash] Sl .
( ’nbl s:skip

,‘(52, rrb) [!al arm crash]

m(lalarn&& crash)  s:crash=fal se “,. m(crash)
m (!al armk&! crash) '.:_ Y mtrue ‘_\ (SQ,mZ) ['al arm crash]
s: al armet rue [(!Sga;mrn?ih] . s: crash=fal se
[al arm ! crash] (54,%) . (32’m3) 7____-';n skip
B Y ['al arm crash]
: "\ mtrue
v massert(fal se)
m (al arm&&! crash) “\ / s: crash=fal se y
e m ski p Py (34, mz) [al arm ! crash]
[al arm ! crash] (34, m]_) ['alarm!crash] (53, m3)

s:al arnetrue

[al arm ! crash] (34, mg



Even though theyst emprocess satisfies the safety property, the parallel
composition of the LTSs contains a path (for examde,mp) — (Sz, M) —
(s3,mp) — (S4,Mp) — (S4,M) — (S4,Mp)) in which thenoni t or process
executes the assertion. The reason for this is the intenigaf the tran-
sitions of the two processes in the parallel compositiorréhs no mech-
anism to ensure that the monitor process will always obst#reechange

in the value of the variabler ash in the state(sy, my) before the system
process resets the value of the variable agaihatlese. In other words,
the usual parallel composition of LTSs does not guarantaehienoni t or
process remainsynchroniseavith the changes in the state of the system it
is supposed to observe.

Thenever claim construct of Promela provides a direct way to add to a
Promela model a process which is guaranteed to execute reyroalsly
with the rest of the system (only one such process per modelawed;
furthermore, because never claims are intended to be usaostyve the
behaviour of models—intuitively, to detect behaviour tehbuld “never”
happen in a system, a never claim may not contain statemeatteffect
changes in the system state). Instead of usipgaxt ype definition for
thenoni t or process, we can thus define a monitor process that will exe-
cute synchronously with the rest of the system ag\aer claim with the
following syntax:

never {
do
:0 (talarm && !crash)
:: (alarm && !crash) -> assert(false)
.. (crash) ->
do
;1 true -> skip
od
od

}

A verifier generated by Spin forms the composition ofeaer claim dec-
laration with a system comprising one or more processes égutixg the
never claim synchronously with the (LTS-like) parallel compait of the
system processes. Every transition in the structure agdlyyg the verifier
then corresponds to air of transitions taken by theever claim and a
process in the rest of the model. (If either the system om#wver claim
cannot execute a transition in a system state, no transgigenerated in
the composition.) The composition of a system witieaer claim thus re-
sembles more closely the product of finite automata (sees it lecture
2) instead of the parallel composition of LTSs.



In our example system, we obtain the composition

(507 I'Tb) [talarm!crash]
s:crash=true
m (!alarmé&! crash)

s:true
m (!al ar m&&! crash)

s:skip
[talarm crash] (817 nb) m (!al ar mg&! crash) ’ (52> rrb) ['al armcrash]
s:crash=fal se
m (crash)
b { (837 m2) [talarm!crash]
s:al arnrtrue
mtrue
d (S47rn3) [al arm ! crash]

(Note that the transition taken by thever claim in a pair of transitions is
always chosen from the transitions enabled in the systei® cbarespond-
ing to the source state of the pair of transitions.)

From thissynchronougsomposition of the system with the monitor process
(specified as aever claim) we see that the failing assertion can no longer
be reached.

(As stated in the assignmermissert statements are rarely usednever
claims. A more conventional way to write the never claim vedog to use a
br eak statement in place of the assertion: a verifier generatecpby\@ll
report an error if theever claim is able to reach the end of its code while
observing the system.)

More information omever claims and the formal definitions of the vari-
ous product constructions used by Spin-generated verdarde found in
Appendix A of Gerard J. Holzmann’s textbodke Spin Model Checker:
Primer and Reference Manyakddison-Wesley, 2003.



