
T–79.4301 Spring 2008
Parallel and Distributed Systems
Tutorial 3 – Solutions

1. a) The goto statements in the model of the alternating bit protocol can
be replaced, for example, with do-loops as follows:

mtype = { msg0, msg1, ack0, ack1 };

chan to_sndr = [2] of { mtype };
chan to_rcvr = [2] of { mtype };

active proctype Sender()
{
do
:: to_rcvr!msg1;

to_sndr?ack1;
to_rcvr!msg0;
to_sndr?ack0

od
}

active proctype Receiver()
{
do
:: to_rcvr?msg1;

to_sndr!ack1;
to_rcvr?msg0;
to_sndr!ack0

od
}

b) To add data to the abstract messages sent by the Sender process to the
Receiver process, we refine the message channel to rcvr into a channel
for transporting messages that consist of a “tag” of type mtype and
the actual data (of type byte) associated with the message. (Because
the receiver does not send any data back to the sender, the type of
the to sndr channel need not be modified.) Furthermore, we add the
channels indata and outdata to model the interface via which the
protocol communicates with its environment that actually generates
and processes the data.

1

mtype = { msg0, msg1, ack0, ack1 };

chan to_sndr = [2] of { mtype };
chan to_rcvr = [2] of { mtype, byte };
chan indata = [0] of { byte };
chan outdata = [0] of { byte };

active proctype Sender()
{
byte data;
do
:: indata?data;

to_rcvr!msg1, data;
to_sndr?ack1;
indata?data;
to_rcvr!msg0, data;
to_sndr?ack0

od
}

active proctype Receiver()
{
byte data;
do
:: to_rcvr?msg1, data;

to_sndr!ack1;
outdata!data;
to_rcvr?msg0, data;
to_sndr!ack0;
outdata!data

od
}

c) Sequences of the requested form can be generated by the following
process:

active proctype Source()
{
do
:: indata!0
:: indata!1;

do
:: indata!2

od
od

}

d) The following process receives messages from the channel outdata and
checks that every message received is either a 0 or a 1. After receiving a

2

1, the process enters an infinite loop and verifies that each subsequent
message received is a 2. (Note that the else statement in the if-
selection cannot be omitted; otherwise the process would block at the
selection if the received data differed from 1.)

active proctype Sink()
{
byte data;
do
:: outdata?data;

assert(data == 0 || data == 1);
if
:: data == 1 ->

do
:: outdata?data;

assert(data == 2)
od

:: else -> skip
fi

od
}

e) Analyzing the model consisting of the processes defined in b), c) and
d) reveals no errors:

$ spin -a solution-e.pml
$ cc -o pan pan.c
$./pan
hint: this search is more efficient if pan.c is compiled -DSAFETY

(Spin Version 5.1.3 -- 11 December 2007)
+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 48 byte, depth reached 122, errors: 0
163 states, stored
105 states, matched
268 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

2.501 memory usage (Mbyte)

3

unreached in proctype Sender
line 19, state 10, "-end-"
(1 of 10 states)

unreached in proctype Receiver
line 32, state 10, "-end-"
(1 of 10 states)

unreached in proctype Source
line 43, state 10, "-end-"
(1 of 10 states)

unreached in proctype Sink
line 60, state 16, "-end-"
(1 of 16 states)

pan: elapsed time 0.01 seconds

It is easy to see that the data transmission protocol is data independent,
i.e., the behaviour of the processes Sender and Receiver does not de-
pend on the actual data received via the channels indata and to rcvr,
respectively (both processes simply pass every data value received on
to another channel without modifying it).

Suppose that the data transmission protocol could lose or duplicate a
message such that the sequence of messages received by the Sink pro-
cess differs from the sequence generated by the Source process. Because
of data independence, we may assume that the protocol loses or dupli-
cates a 1 that is generated by the data source process. But then the
Sink process would receive a sequence of messages conforming to one
of the regular expressions (0)∗(2)∗ or (0)∗11(2)∗; however, one of the
assertions added to the Sink process would fail in such a case. Because
the assertions never fail, it follows that the model of the data transmis-
sion protocol cannot lose or duplicate messages sent from the sender to
the receiver.

f) To model the possibility of losing messages or acknowledgements sent
between the sender and the receiver, we add two inline macros that
handle the sending of messages and acknowledgements. The macros
nondeterministically decide whether to send the message or quietly
drop it. These macros are then used for communication instead of
directly sending to the channels. The model (without the Source and
Sink processes, which remain unchanged) is as follows:

4

mtype = { msg0, msg1, ack0, ack1 };

chan to_sndr = [2] of { mtype };
chan to_rcvr = [2] of { mtype, byte };
chan indata = [0] of { byte };
chan outdata = [0] of { byte };

inline send(m,d) {
if
:: skip -> to_rcvr!m,d
:: skip

fi
}

inline ack(a) {
if
:: skip -> to_sndr!a
:: skip

fi
}

active proctype Sender()
{
byte data;
do
:: indata?data;

send(msg1,data);
to_sndr?ack1;
indata?data;
send(msg0,data);
to_sndr?ack0

od
}

active proctype Receiver()
{
byte data;
do
:: to_rcvr?msg1, data;

ack(ack1);
outdata!data;
to_rcvr?msg0, data;
ack(ack0);
outdata!data

od
}

Note that the sending branches in the send and ack macros start with
the skip-statement. This allows the execution of the branch even if

5

the queue is full. Without it, the other branch would be the only
option in such a case. This could potentially lead to a situation where
a real deadlock is not detected, because the system would be forced to
drop every message if the receiving end did not read them. Now it is
possible to execute the sending branch and then block on the actual
sending command.

g) The model with message loss has an error:

$ spin -a solution-f.pml
$ cc -o pan pan.c
$./pan
hint: this search is more efficient if pan.c is compiled -DSAFETY
pan: invalid end state (at depth 80)
pan: wrote solution-f.pml.trail

(Spin Version 5.1.3 -- 11 December 2007)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 48 byte, depth reached 82, errors: 1
75 states, stored
50 states, matched

125 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

2.501 memory usage (Mbyte)

pan: elapsed time 0.01 seconds

The deadlock is reached only after 80 steps, which makes it somewhat
difficult to analyze what actually went wrong. The -i option can be
given to pan to find the shortest path to the error, but for it to work
accurately it needs to be compiled with the -DREACH option:

$ cc -DREACH -o pan pan.c
$./pan -i
hint: this search is more efficient if pan.c is compiled -DSAFETY

6

pan: invalid end state (at depth 80)
pan: wrote solution-f.pml.trail
pan: reducing search depth to 79
pan: wrote solution-f.pml.trail

... some output omitted ...

pan: reducing search depth to 9
pan: wrote solution-f.pml.trail
pan: reducing search depth to 1

(Spin Version 5.1.3 -- 11 December 2007)
+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 48 byte, depth reached 82, errors: 13
117 states, stored
121 states, matched
238 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

2.501 memory usage (Mbyte)

unreached in proctype Sender
line 33, state 20, "-end-"
(1 of 20 states)

unreached in proctype Receiver
line 46, state 20, "-end-"
(1 of 20 states)

unreached in proctype Source
line 57, state 10, "-end-"
(1 of 10 states)

unreached in proctype Sink
line 69, state 5, "assert((data==2))"
line 67, state 6, "outdata?data"
line 74, state 16, "-end-"
(3 of 16 states)

pan: elapsed time 0.03 seconds
pan: rate 3900 states/second

Now the execution path can be analyzed for example with:

7

$ spin -c -s -r -p -t solution-f.pml
Starting Sender with pid 0
proc 0 = Sender
Starting Receiver with pid 1
proc 1 = Receiver
Starting Source with pid 2
proc 2 = Source
Starting Sink with pid 3
proc 3 = Sink
q\p 0 1 2 3
1 . . indata!0
1: proc 2 (Source) line 51 "solution-f.pml" (state 1) [indata!0]
1 indata?0
2: proc 0 (Sender) line 26 "solution-f.pml" (state 1) [indata?data]
3: proc 0 (Sender) line 11 "solution-f.pml" (state 4) [(1)]

spin: trail ends after 3 steps

final state:

#processes: 4
3: proc 3 (Sink) line 62 "solution-f.pml" (state 13)
3: proc 2 (Source) line 50 "solution-f.pml" (state 7)
3: proc 1 (Receiver) line 38 "solution-f.pml" (state 17)
3: proc 0 (Sender) line 28 "solution-f.pml" (state 8)

4 processes created

This prints out the sent and received messages in columns, the states
that each process goes through, and the final state where all pro-
cesses are waiting for something to happen. For more details about
the options accepted by spin and the generated analyzer, see http:

//spinroot.com. The trace shows that the sender sends a message
which is then lost, and because the receiver has not seen it, no ac-
knowledgement is sent, and no process can continue.

h) The error in the model can be fixed by making Sender retransmit a mes-
sage if a timeout occurs. (The timeout construct is a special Promela
statement that becomes enabled if there is no other way for any of the
processes in the model to proceed.) Similarly, the Receiver is made to
resend the acknowledgment to the last message it received if it receives
a message with an incorrect tag (corresponding to a situation in which
the original acknowledgment was lost in transmission). The final model
with all processes is as follows:

8

http://spinroot.com
http://spinroot.com

mtype = { msg0, msg1, ack0, ack1 };

chan to_sndr = [2] of { mtype };
chan to_rcvr = [2] of { mtype, byte };
chan indata = [0] of { byte };
chan outdata = [0] of { byte };

inline send(m,d) {
if
:: skip -> to_rcvr!m,d
:: skip

fi
}

inline ack(a) {
if
:: skip -> to_sndr!a
:: skip

fi
}

active proctype Sender()
{
byte data;
do
:: indata?data;

send(msg1,data);
do
:: to_sndr?ack1 -> break
:: timeout -> send(msg1,data)

od;
indata?data;
send(msg0,data);
do
:: to_sndr?ack0 -> break
:: timeout -> send(msg0,data)

od
od

}

active proctype Receiver()
{
byte data;
do
:: do

:: to_rcvr?msg0, data -> ack(ack0)
:: to_rcvr?msg1, data -> break

od;
ack(ack1);

9

outdata!data;
do
:: to_rcvr?msg1, data -> ack(ack1)
:: to_rcvr?msg0, data -> break

od;
ack(ack0);
outdata!data

od
}

active proctype Source()
{
do
:: indata!0
:: indata!1;

do
:: indata!2

od
od

}

active proctype Sink()
{
byte data;
do
:: outdata?data;

assert(data == 0 || data == 1);
if
:: data == 1 ->

do
:: outdata?data;

assert(data == 2)
od

:: else -> skip
fi

od
}

The Spin-generated verifier now confirms that this model of the pro-
tocol works as expected. The model has no deadlocks, and, by the
same argument as in step d), no message generated by the data source
process is lost or duplicated in the sequence of messages “seen” by the
data sink process.

$ spin -a solution-h.pml
$ cc -o pan pan.c
$./pan

10

hint: this search is more efficient if pan.c is compiled -DSAFETY

(Spin Version 5.1.3 -- 11 December 2007)
+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 48 byte, depth reached 156, errors: 0
389 states, stored
249 states, matched
638 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

2.501 memory usage (Mbyte)

unreached in proctype Sender
line 39, state 42, "-end-"
(1 of 42 states)

unreached in proctype Receiver
line 58, state 42, "-end-"
(1 of 42 states)

unreached in proctype Source
line 69, state 10, "-end-"
(1 of 10 states)

unreached in proctype Sink
line 86, state 16, "-end-"
(1 of 16 states)

pan: elapsed time 0.02 seconds
pan: rate 19450 states/second

11

