T-79.4301 Spring 2008
Parallel and Distributed Systems
Tutorial 1 — Solutions

1. a) Dekker’s algorithm can be modelled in Promela as follows (the line
numbers are not strictly part of the code)

©O© 0 NO O b W N+~

N NNDNDNDNDNDNNMNMNDNDNNDMNNRPE, PR PR P2 222
© 00O NO PP WNEFE O OWWONO U P WNE—- O

bool flag[2] = false;
bool turn = O;

active [2] proctype mutex()
{
/* i is my index, j is the other process */
pid 1 = _pid; pid j = 1 - _pid;
/* Infinite loop */
again:
/* [noncritical section] */
flag[i] = true;
/* [trying section] */

do
i flagljl —>
if
i turn = j >
flag[i] = false;
(turn !'= j);
flag[i] = true;
11 else —> skip
fi;
:: else —> break
od;

/* [critical section] */
turn = j;

flag[i] = false;

goto again;

The simple pseudo-code translates into Promela in a very straightfor-
ward way. Line 1 initialises all elements of the flag array (shared
between all processes) to false. Basically, line 4 instructs the model
checker Spin to analyse two concurrent processes executing the code

1. b)

enclosed in the curly braces. The model checker Spin numbers these
processes starting from zero; an individual process can use the special
variable _pid to find its numeric identifier (line 7). The variables i and
j defined at line 7 are local to each running process.

In the rest of the code, the comments, variable assignments, and tests
on variables are replaced with their Promela equivalents (Promela uses
C-style comments, assignments, and operators). Unlike C programs,
however, where every statement reached by the program control can be
“executed immediately”, Promela processes may block on certain state-
ments of the code. This feature is used at line 18 of the Promela code
to implement the idle loop in the pseudo-code: a process that reaches
this line of the Promela code will not proceed until the condition on the
variables becomes true. To avoid similar blocking in the do-loop and
the if-selection, we have to explicitly specify what the process should
do when the condition at line 14 or 16 is false. The skip statement at
line 20 is a no-op; a break statement can be used to break out of the
innermost do-loop (line 22).

To check whether Dekker’s algorithm solves the mutual exclusion prob-
lem correctly, we add to the program a new variable count (shared
between the processes) that gives the number of processes that are cur-
rently in their critical section. A process increments and decrements
the value of this variable whenever entering and leaving the critical
section, respectively. The requirement that only one process should be
in the critical section at any one time is represented by the assertion
at line 27.

1 bool flag[2] = false;

2 bool turn = 0;

3 byte count = 0;

4

5 active [2] proctype mutex()

6 {

7 /* i is my index, j is the other process */
8 pid i = _pid; pid j = 1 - _pid;
9 /* Infinite loop */

10 again:

11 /* [noncritical section] */

12 flag[i] = true;

13 /* [trying section] */

[y
N

do

15 10 flagljl —>

16 if

17 i turn = j >

18 flagl[i] = false;
19 (turn !'= j);

20 flag[i] = true;
21 :: else -> skip

22 fi;

23 :: else —> break

24 od;

25

26 count++;

27 assert(count == 1);

28 /* [critical section] */

29 count--;

30

31 turn = j;

32 flag[i] = false;

33 goto again;

34 }

Suppose that the Promela code from b) is in the file mutex.pml in the
current directory. We can now use the model checker Spin to generate
an analyser for this model by giving the command

$ spin -a mutex.pml

This command generates a C source code file (pan. c, short for “protocol
analyser”) along with some auxiliary files in the current directory. We
then compile the file and run the analyser:

$ cc -o pan pan.c
$./pan
hint: this search is more efficient if pan.c is compiled -DSAFETY

(Spin Version 5.1.3 -- 11 December 2007)
+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)

1. d)

invalid end states +

State-vector 20 byte, depth reached 49, errors: 0O
166 states, stored
156 states, matched
322 transitions (= stored+matched)
0 atomic steps
hash conflicts: 0 (resolved)

2.501 memory usage (Mbyte)

unreached in proctype mutex
line 34, state 22, "-end-"
(1 of 22 states)

pan: elapsed time O seconds

Intuitively, the analyser generated by Spin checks whether there exists
a way to interleave the invidivual statements of the code between the
two processes competing for the permission to enter the critical sec-
tion such that the assertion added to the code is violated. Such an
interleaving of the statements exists if and only if it is possible for the
two processes to simultaneously enter their critical section. The report
given by the analyser shows that no such interleaving exists. There-
fore, we can conclude that the Promela model for Dekker’s algorithm
correctly solves the mutual exclusion problem for two processes.

To check whether the algorithm remains correct when the do-loop in the
model is changed to an if-selection, we model the modified algorithm
in Promela:

1 bool flag[2] = false;

2 bool turn = O;

3 byte count = O;

4

5 active [2] proctype mutex()

6 Ao

7 /* i is my index, j is the other process */
8 pid 1 = _pid; pid j = 1 - _pid;

9 /* Infinite loop */

10 again:

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

}

/* [noncritical section] */
flag[i] = true;
/* [trying section] */

if
i flagljl —>
if
i turn == j >
flag[i] = false;
(turn !'= j);
flagl[i] = true;
i1 else —> skip
fi;
:: else -> skip
fi;
count++;
assert(count == 1);
/* [critical section] */
count——;
turn = j;

flag[i] = false;
goto again;

Repeating the analysis for this model (mutex_2.pml) gives the following

result:

$ spin -a mutex_2.pml
$ cc -o pan pan.c

$./pan

hint: this search is more efficient if pan.c is compiled -DSAFETY
pan: assertion violated (count==1) (at depth 104)
pan: wrote mutex_2.pml.trail

(Spin Version 5.1.3 -- 11 December 2007)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:

never claim - (none specified)

1. e)

assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 20 byte, depth reached 115, errors: 1
162 states, stored
81 states, matched
243 transitions (= stored+matched)
0 atomic steps
hash conflicts: 0 (resolved)

2.501 memory usage (Mbyte)

pan: elapsed time 0.01 seconds

In this case the assertion is violated. Indeed, both processes can enter
the critical section at the same time in this case. A simple scenario in
which this occurs proceeds as follows:

— Process 1 begins its execution and sets flag[1] to true (line
12). Because flag[0] was initialised to false, only the else
branch of the outer if-selection is executable. Therefore, process
1 increments count to 1 (line 26) and proceeds to the critical
section.

— While process 1 is still in its critical section, process 0 begins its ex-
ecution. After setting £lag[0] to true (line 12), it finds flag[1]
true at line 15 and proceeds to the inner if-selection. Because
process 1 has not left its critical section, however, the variable
turn still has its initial value 0 at this point. Therefore also pro-
cess 0 is allowed to enter its critical section, and the assertion at
line 27 is violated.

(In practice, counterexamples such as these can be generated automat-
ically by the analyser. These features of the tool will be demonstrated
later during the course.)

The Promela model of Peterson’s algorithm (augmented with an asser-
tion to check its correctness) is as follows:

/* Peterson’s mutex algorithm, two parallel processes 0 and 1 */

bool flag[2] = false;
bool turn = O;
byte count = O;

/* flag is initialized to all false, */
/* and turn has the initial value 0 */

active [2] proctype peterson()

{
pid i = _pid; pid j = 1 - _pid;
/* Infinite loop */

again:
/* [noncritical section] */

flagl[i] = true;

/* [trying section] */

turn = 1i;

(flaglj] == false || turn !'= i);

count++;

assert(count == 1);

/* [critical section] */
count——;

flag[i] = false;
goto again

We again analyse the model using the Spin model checker:

$ spin -a peterson.pml

$ cc -o pan pan.c

$./pan

hint: this search is more efficient if pan.c is compiled -DSAFETY

(Spin Version 5.1.3 -- 11 December 2007)
+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +

acceptance cycles - (not selected)
invalid end states +

State-vector 20 byte, depth reached 22, errors: O
38 states, stored
27 states, matched
65 transitions (= stored+matched)
0 atomic steps
hash conflicts: 0 (resolved)

2.501 memory usage (Mbyte)
unreached in proctype peterson
line 28, state 9, "-end-"
(1 of 9 states)
pan: elapsed time O seconds
No errors are reported by the analyser. Therefore, the model of Peter-

son’s algorithm correctly solves the mutual exclusion problem for two
processes.

