
T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 2
28th of January 2008

Keijo Heljanko
Keijo.Heljanko@tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 1/38



Common Flaws

Some common flaws in concurrent systems include:

Deadly Embrace

Circular Blocking

Deadlock

Starvation (livelock)

Underspecification

Overspecification

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 2/38



Deadly Embrace

A common problem in resource allocation

Consider two callers A and B making a telephone
call to each other simultaneously

To connect a call two shared resources must be
exclusively allocated: the caller’s telephone line and
the receiver’s line

It would be natural to use a protocol where we first
allocate the caller’s line and only then the receiver’s
line

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 3/38



Deadly Embrace (cnt.)

However, if A and B call simultaneously each other, it
can be the case that both A and B allocated their
own lines but fail to allocate the receiver’s line

If there is no recovery mechanism in place, the
system might deadlock

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 4/38



Deadly Embrace - Process A

In pseudocode process A might look like:
process A:
// Code removed
lock(line_A);
// Code removed
lock(line_B);
// Code removed
release(line_B);
// Code removed
release(line_A);
// Code removed
endprocess;

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 5/38



Deadly Embrace - Process B

In pseudocode process B might look like:
process B:
// Code removed
lock(line_B);
// Code removed
lock(line_A);
// Code removed
release(line_A);
// Code removed
release(line_B);
// Code removed
endprocess;

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 6/38



Deadly Embrace - Deadlock

An execution leading to a potential deadlock can be:
Process A: Process B:

lock(line_A)
lock(line_B)

// Deadlock:
// Process A is waiting for line B
// Process B is waiting for line A

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 7/38



Circular Blocking

The deadly embrace extended over any number of
processes. Classic academic example:
Dining philosophers

There are n ≥ 2 philosophers sitting around a round
table thinking

Because all thinking is a tough job also the
philosophers need to eat

The dish prepared for them is particularly slippery
spaghetti which requires two forks to be eaten

Unfortunately there are only n forks available,
distributed one between each pair of philosophers

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 8/38



Philosophers

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 9/38



Dining Philosophers

The philosophers have agreed on a protocol to
allocate the forks:

Think until hungry
Grab left fork
Grab right fork
Eat
Return right fork
Return left fork
Repeat from the beginning

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 10/38



Dining Philosophers (cnt.)

Assume we have four philosophers:
p(0),p(1),p(2),p(3)

The forks are: f[0],f[1],f[2],f[3]

The fork f[0] is to left of p(0) and to the right of p(3)

It is now easy to see that the philosophers can all
starve: Can you see how?

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 11/38



Dining Philosophers Pseudocode

#define left(i) (f[(i)])
#define right(i) (f[((i)+1)%n])
process p(i):

while true do
think();
lock(left(i));
lock(right(i));
eat();
release(right(i));
release(left(i));

enddo;
endprocess;

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 12/38



Dining Philosophers - Deadlock

A deadlock execution is:
p(0): p(1): p(2): p(3):
lock(f[0])

lock(f[1])
lock(f[2])

lock(f[3])
After this:
p(0) is waiting for p(1) to release fork f[1]
p(1) is waiting for p(2) to release fork f[2]
p(2) is waiting for p(3) to release fork f[3]
p(3) is waiting for p(0) to release fork f[0]

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 13/38



Dining Philosophers vs. Real Life

The aim of the dining philosophers example is to:

Show that circular blocking chains can be arbitrarily
long

Show that the possibility of stumbling on the
deadlock by a randomly picked test run is extremely
small: There is exactly one deadlocking state, and an
exponential (in n) number of non-deadlocking states

Dining philosophers was too easy: Often locking
problems are much harder to spot just because the
programs are larger and the locking is less structured

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 14/38



Deadlock

Deadlocks are a common problem in distributed
systems.

As seen before deadlocks can occur from the use of
blocking lock primitives.

In a message passing system deadlocks might occur
due to processes waiting for messages from one
another in similar manner as processes are waiting
for other processes to release locks

Mixing priority based scheduling with locking is also
known to easily lead to deadlocks

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 15/38



Starvation (livelock)

Starvation (livelock) is a different problem. In it a part
of the system is live and executing but other parts of
the system are blocked indefinitely.

Example: High priority process using a busy wait
(spinlock) to wait for a low priority process to release
a lock in an OS kernel. However, the low priority
process is never given CPU time because the
scheduler always picks the highest priority runnable
task to be executed.

Deadlock and starvation will be treated more formally later.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 16/38



Under- and Overspecification

Examples in a message passing (data-communications
protocol) setting:

Underspecification: A message arrives in a protocol
implementation and there is no code to handle it
(unexpected reception)

Overspecification: There is code in a protocol
implementation to cope with the reception of
messages which are not possible in the protocol
(dead code)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 17/38



Non-concurrency Bugs

Of course your standard set of normal bugs not related to
concurrency applies

Incorrect control flow

Incorrect data manipulation

Wrong assumptions about the environment

Null pointer exceptions

Uninitialized data

Array out of bounds errors

Memory management problems
(e.g., leaks, accessing freed memory)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 18/38



The Spin Model Checker

The model checker Spin was designed at Bell Labs
by Gerard J. Holzmann (currently at NASA)

It received the ACM Software System award in 2002.
(Other winners: Unix, TeX, Smalltalk, Postscript,
TCP/IP)

Originally designed for data-communications
protocol analysis

The modelling language of Spin is called Promela

The Spin Website has more material:
http://www.spinroot.com/

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 19/38

http://www.spinroot.com/


Spin

Some of the reasons why Spin is successful

Very efficient implementation (using generated C
code)

Contains advanced model checking algorithms,
several of which are enabled by default

A graphical user interface available (Xspin)

Has been around for a while (15 years) and has been
solidly supported by Holzmann

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 20/38



The Acronyms

Spin = (Simple Promela Interpreter)

Promela = (Protocol/Process Meta Language)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 21/38



The Books

The version 1.0 of Spin was published in Jan 1991:
Gerard J. Holzmann: Design and Validation of
Computer Protocols, Prentice Hall, Nov 1990.
Book still available as PDF from:
http://spinroot.com/spin/Doc/Book91.html

A new book on Spin is much more up to date (v. 4.x):
Gerard J. Holzmann: The Spin Model Checker -
Primer and Reference Manual, Addison-Wesley,
Sep 2003, ISBN 0-321-22862-6.
For Book extras see:
http://spinroot.com/spin/Doc/Book_extras/index.html

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 22/38

http://spinroot.com/spin/Doc/Book91.html
http://spinroot.com/spin/Doc/Book_extras/index.html


Promela

The input language of the Spin model checker

Control flow syntax inherited from Dijkstra’s guarded
command language

Message passing primitives from Hoare’s CSP
language

Syntax for data manipulation from Kernighan and
Ritchie’s C language

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 23/38



Modelling in Promela

This part is based on a nice Spin Beginners’ Tutorial by
Theo C. Ruys:
http://spinroot.com/spin/Doc/SpinTutorial.pdf
and The Spin Model Checker - Primer and Reference
Manual

A Promela model consists of a set of processes
communicating with each other through:

Global variables

Message queues of fixed capacity
(called channels in Promela)

Synchronization (rendezvous) on common actions

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 24/38

http://spinroot.com/spin/Doc/SpinTutorial.pdf


Promela Model

A Promela model consists of:

Type declarations

Channel declarations

Variable declarations

Process declarations

Optionally: the init process (the “main()” process)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 25/38



State of a Promela Model

The state of a Promela model consists of states of:

Running processes (program counter)

Data objects (global and local variables)

Message channels

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 26/38



Finite State Models

Promela models are always finite state because

All data objects have a bounded domain

All message channels have a bounded capacity

The number of running processes is limited (max
255 processes)

The number of Promela statements in each process
is finite - Also no procedure mechanism exists

Thus analysis of Promela models is in theory decidable.

In practice the available memory and time is the limit.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 27/38



Processes

A process type (proctype) consists of

Name - name of the proctype

List of formal parameters - inputs given at start

Local variable declarations

Body - a sequence of statements: code of the
procedure

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 28/38



Processes (Example)

In the following code the init process runs two instances
of the you_run proctype
proctype you_run(byte x)
{

printf("x = %d, pid = %d\n", x, _pid)
}

/* leaving pids implicit */
init {

run you_run(0);
run you_run(1)

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 29/38



Processes (Example cnt.)

We can use spin for random simulation as follows:
$ spin ex1.pml

x = 0, pid = 1

x = 1, pid = 2

3 processes created

$ spin ex1.pml

x = 1, pid = 2

x = 0, pid = 1

3 processes created

$ spin ex1.pml

x = 0, pid = 1

x = 1, pid = 1

3 processes created
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 30/38



Processes (Example cnt.)

Note that Spin used indentation to show which process
printed what. (You can use spin -T to disable this.)
You can provide a seed to the Spin pseudorandom
number generator as follows:
$ spin -n5 ex1.pml

x = 0, pid = 1

x = 1, pid = 2

3 processes created

In Promela the init process gets alway the pid 0 but the
other processes dynamically allocate their pids

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 31/38



Process

Is defined by proctype definition

Executes concurrently with all other processes, the
scheduling used is completely non-deterministic

There may be several processes of the same type

Local state:
Program counter
Contents of local variables

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 32/38



Creating Processes

Processes are created using the run statement.
To be precise: run expression (with a side-effect).

Processes can also be created at the startup by
adding active[numprocs] in front of a proctype
Foo() to create numprocs instances of proctype
Foo

Example:
active [2] proctype you_run()
{

printf("my pid is: %d\n", _pid)
}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 33/38



Creating Processes (cnt.)

Running the example:
$ spin ex2.pml

my pid is: 1
my pid is: 0

2 processes created

$ spin ex2.pml
my pid is: 0

my pid is: 1
2 processes created

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 34/38



Variables and Types

The Promela basic types are (sizes match those of C).

Type Typical Range

bit 0,1

bool false, true

byte 0..255

chan 1..255

mtype 1..255

pid 0..255

short −215..215−1

int −231..231−1

unsigned 0..232−1
T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 35/38



Example Declarations

bit x, y; /* two single bits, initially 0 */

bool turn = true; /* boolean value, initially true */

byte a[12]; /* array of 12 bytes initialised to 0 */

short b[4] = 89; /* array of 4, all initialised to 89 */

int cnt = 67; /* integer initialised to 67 */

unsigned v : 5; /* unsigned stored in 5 bits */

unsigned w : 3 = 5; /* value range 0..7, initially 5 */

mtype n; /* uninitialised mtype (enumeration) variable */

chan in = [3] of {short, byte, bool}; /* message channel

with 3 messages capacity, messages have three fields */

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 36/38



Mtype

The mtype (message type) keyword is a way of
introducing enumerations in Spin.
Example:

mtype = { apple, pear, orange, banana };

mtype = { fruit, vegetables, cardboard };

init {

mtype n = pear; /* initialise n to pear */

printf("the value of n is %e\n", n)

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 37/38



Mtype (cnt.)

Running the example in Spin:

$ spin ex3.pml

the value of n is pear

1 process created

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 38/38


	Common Flaws
	Deadly Embrace
	Deadly Embrace (cnt.)
	Deadly Embrace - Process A
	Deadly Embrace - Process B
	Deadly Embrace - Deadlock
	Circular Blocking
	Philosophers
	Dining Philosophers
	Dining Philosophers (cnt.)
	Dining Philosophers Pseudocode
	Dining Philosophers - Deadlock
	Dining Philosophers vs. Real Life
	Deadlock
	Starvation (livelock)
	Under- and Overspecification
	Non-concurrency Bugs
	The Spin Model Checker
	Spin
	The Acronyms
	The Books
	Promela
	Modelling in Promela
	Promela Model
	State of a Promela Model
	Finite State Models
	Processes
	Processes (Example)
	Processes (Example cnt.)
	Processes (Example cnt.)
	Process
	Creating Processes
	Creating Processes (cnt.)
	Variables and Types
	Example Declarations
	Mtype
	Mtype (cnt.)

