
T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 10
14th of April 2008

Keijo Heljanko
Keijo.Heljanko@tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 1/29

Peterson’s Mutex (by W. Reisig)

C

E

G

D

A

F

M

N

L

B K

J

P

H
c d

e f

g

b

a

m k

p n

q
h

j

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 2/29

From 1-bounded P/T-nets to LTSs

A 1-bounded P/T-net N with |P| places can always
be converted to a synchronization of LTSs
LN = L1

f
L2

f
· · ·

f
Ln with n ≤ |P| components which

have two states each. The reachability graph of LN
will be isomorphic to that of N.

The construction is slightly too complicated to show
here. The main trick is to use the set of transitions T
as the alphabet Σ in LN , and to make each Li
corresponding to a place p ∈ P synchronize on all
labels t ∈ •p∪ p•.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 3/29

From P/T-nets to Promela

Suppose that the net N we are looking is
255-bounded. Holzmann suggests the following
scheme for translating P/T-nets (with W (x,y) = 1 for
all (x,y) ∈ F , a restriction which can be easily
removed) to Promela as shown in the next two slides.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 4/29

From P/T-nets to Promela (cnt.)

#define Place byte /* < 256 tokens per place */

Place s0, s1, s2, r0, r1, r2;

#define inp1(x) (x>0) -> x--
#define inp2(x,y) (x>0&&y>0) -> x--; y--

#define out1(x) x++
#define out2(x,y) x++; y++

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 5/29

From P/T-nets to Promela (cnt.)

init
{

atomic {s0=1;r0=1} /*initial marking*/
do

/* t1 */ :: atomic { inp1(s0) -> out1(s1) }
/* t2 */ :: atomic { inp1(r0) -> out1(r2) }
/* t3 */ :: atomic { inp2(s1,r0)-> out2(s2,r1)}
/* t4 */ :: atomic { inp1(r2) -> out1(r2) }

od
}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 6/29

From P/T-nets to Promela (cnt.)

Actually, all atomic statements of the translation can
safely be replaced with d_step statements.

By using the LTS to P/T-net mapping first also LTSs
can be translated to Promela.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 7/29

From P/T-nets to Promela (cnt.)

It may be more efficient to use a Petri net model
checker such as PROD
(http://www.tcs.hut.fi/Software/prod/)
to do the model checking as for example the partial
order reductions in Spin are not really effective for
the model obtained from the translation.
(The concurrency of the model is hidden inside the
data manipulation of a single process.)

Another Petri net model checker is Maria
(http://www.tcs.hut.fi/Software/maria/index.en.html).

Both of the tools actually use high-level Petri nets,
which contain extensions to deal with structured data

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 8/29

http://www.tcs.hut.fi/Software/prod/
http://www.tcs.hut.fi/Software/maria/index.en.html

Structural Analysis via Example

We want to prove mutual exclusion of Peterson’s mutex
algorithm. The critical sections correspond to places E
and N, and thus our proof objective is:

M(E)+M(N) ≤ 1 (1)

We can easily check that the net satisfies the following
place invariants as they hold in the initial state and are
preserved by every transition:

M(C)+M(D)+M(E)+M(F) = 1 (2)
M(G)+M(H) = 1 (3)
M(L)+M(M)+M(N)+M(P) = 1 (4)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 9/29

Example (cnt.)

By linear algebra, we can sum up the invariants (2), (3),
and (4) to obtain a new invariant:

M(C)+M(D)+M(E)+M(F)+M(G)+

M(H)+M(L)+M(M)+M(N)+M(P) = 3 (5)

We need expressions on the markings which do not use
equality to a constant on the right hand side to proceed
further.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 10/29

Example (cnt.)

It is easy to check that the following equation holds in the
initial state and is preserved by every transition:

M(C)+M(F)+M(G)+M(M) ≥ 1 (6)

Next subtract (6) from (5), to get the result:

M(D)+M(E)+M(H)+M(L)+M(N)+M(P) ≤ 2 (7)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 11/29

Example (cnt.)

We also have:

M(D)+M(H)+M(L)+M(P) ≥ 1 (8)

When we subtract (7) from (6), we get the result:

M(E)+M(N) ≤ 1 (9)

Now, (8) is our proof objective (1), and thus we are done.
Therefore the mutual exclusion property holds for the
Peterson’s mutex algorithm.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 12/29

Structural Analysis Summary

With structural analysis, it is possible to prove properties
of a model without exploring its dynamic behavior.

Structural analysis is not a complete method and always
requires some human assistance. Thus it cannot replace
model checking methods. However, it is can be a very
powerful technique in the hands of a person performing
the verification.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 13/29

Extending LTSs with Data

Sometimes it is convenient to extend the LTS model
with data in order to more conveniently model
Promela like languages.

We will sketch the idea below in an informal manner.

The idea is the following: Assume we have a system
with n LTS components Li, which manipulate m
global variables x j with a value range 0. . .r.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 14/29

ELTSs

The state vector of the extended LTS system (ELTS)
will consist of a tuple (s1,s2, . . . ,sn,v1,v2, . . . ,vm),
where si is the current local state of the component
Li and v j is the current value of the global variable x j.

The initial state will be extended to give initial values
for all the global variables.

For each global variable we can define some
operations, for example inc(x) to increment the
value of global variable x, dec(x) to decrement it,
and expressions like iszero(x) to check whether
the variable is zero. (Expressions must be side-effect
free.)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 15/29

ELTSs (cnt.)

Now we can for each local transition of the LTS add a
guard: a list of expressions evaluated using the
current values of the global variables. The guard will
evaluate to true iff all the expressions evaluate to
true.

A global transition will be enabled iff all guards of all
its component transitions evaluate to true.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 16/29

ELTSs (cnt.)

To update the global variables, each local transition
is also associated with a list of operations.

When a global transition is fired, each of the local
transitions participating in it will in their turn execute
its list of operations on the global variables.

The state of global variables obtained after all
operations have been executed is recorded as the
state reached after firing the global transition.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 17/29

ELTSs (cnt.)

It is fairly straightforward to include other data
manipulation features of Promela such as FIFOs and
all their expression and operations in an ELTS model.

The part that is hard to faithfully handle using ELTSs
are the atomic and d_step features of Promela.

There are many variants of the ELTS model, also
state machines variants (extended finite state
machines, EFSMs) are pretty common in the
literature.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 18/29

Promela and EFSMs

Internally inside Spin all Promela programs are first
translated into (a Spin variant of) extended finite
state machines EFSMs.

Consider for example the Peterson’s Mutex algorithm
shown in the next slide.

Its EFSM can be produced in xspin using the feature
“View Spin automaton for each Proctype” available in
the run menu. The automaton is shown in the next
slide following the Promela code.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 19/29

Promela: Peterson’s Mutex

bool turn, flag[2]; /* Code reformatted, old line numbers below */

byte cnt;

active [2] proctype P1()

{ pid i, j;

i = _pid; /* line 9 */

j = 1 - _pid;

again: flag[i] = true; /* line 12 */

turn = i;

!(flag[j] && turn == i) ->

cnt++; assert(cnt == 1); cnt--; /* line 16 */

flag[i] = false; /* line 18 */

goto again

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 20/29

EFSM for Peterson’s Mutex

line 9

line 12

line 13

line 14

line 16

line 16

line 16

line 18

 flag[i] = 0

 (!((flag[j]&&(turn==i))))

 i = _pid

 cnt = (cnt+1)

 assert((cnt==1))

 flag[i] = 1

 cnt = (cnt-1)

 turn = i

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 21/29

Notes on the Spin EFSM

Notice how all the control flow statements have been
removed, and all that remains is a state machine with
expressions added to the edges. For example, the
goto on line 19 has been removed. No goto
statements will exists in any Spin EFSMs. (The
picture is incomplete wrt. expressions.)

Spin has done some internal optimizations. For
example, there is no state of the automaton
corresponding to line 10 of the program. This
optimization is safe because j is a local variable.

At runtime there are two instances of the same
EFSM running.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 22/29

Spin EFSMs

The statements appearing on edges of Spin EFSMs are:

Assignments

Assertions

Print statements

Send or Receive Statements

Promela expressions (expression statements)

All other features of Promela (if-statements,do-loops, go-

tos, etc.) are mapped to the structure of the state machine

part of the Spin EFSM.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 23/29

Stuttering

Recall from Lecture 8 how past formulas were
defined over finite paths π = x0x1x2 . . .xn ∈ (2AP)∗.

By stuttering we mean a situation where π contains
two consecutive indexes such that xi = xi+1, i.e., two
consecutive states where the valuation of the atomic
propositions did not change.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 24/29

Cause of Stuttering

In a parallel system quite a few things cause
stuttering. For example, firing an invisible transition τ
in some component not linked to the property under
model checking causes the τ to be observable by the
stuttering of current valuation of atomic propositions.

It has been argued, that a temporal logic should not
be able to observe the firing of such invisible
transitions, and temporal logics insensitive to
stuttering should be used instead.

In other words: If the logic is not insensitive to
stuttering, the verification results can differ due to a
single firing of an “invisible transition”, which conflicts
with our intuitive notion of what “invisible” means.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 25/29

Stuttering Equivalence

Two sequences π and π′ are said to be stuttering
equivalent, if π can be obtained from π′ by executing
a finite sequence of stuttering removals and
insertions, where:

A stuttering removal takes two letters xixi+1 at
consecutive indexes of π′ such that xi = xi+1, and
replaces them in π′ with a single letter xi.

A stuttering insertion takes a single letter xi of π′

and replaces it in π′ with two copies: xixi.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 26/29

Stuttering Invariance

A logic is said to be invariant under stuttering (also
called stuttering insensitive) iff for every formula ψ of
the logic and every pair of stuttering equivalent
words π,π′ it holds that π |= ψ iff π′ |= ψ.

In other words, a stuttering invariant logic cannot
distinguish two sequences which only differ by the
amount of stuttering in the sequences.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 27/29

Stuttering and Past Safety Formulas

Recall the definition of past safety formulas from Lectures
8 and 9.

The set of past safety formulas in not stuttering
invariant because for example the formula
G(p ⇒ Yq) can distinguish two stuttering equivalent
words.

By disallowing the use of the “yesterday” operator Y
(and its variant Z) the logic becomes stuttering
invariant.

For future time logics, similarly, the “next” operator X
needs to be disallowed to obtain a stuttering invariant
logic.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 28/29

Benefits of Stuttering Invariance

The partial order reductions algorithms such as the
ample sets employed by Spin require the
specification logic to be stuttering invariant.

For safety properties that are stuttering invariant, one
can synchronize the specification automaton with
only transitions that change the valuation of atomic
propositions. (You need to synchronize on all of them
in order not to introduce spurious counterexamples,
see Tutorial 8.)

Especially for run-time verification it can be hard to
synchronize with all actions of the system in an
efficient manner but limiting to observing changes to
the atomic propositions may be much more feasible.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2008 – 29/29

	Peterson's Mutex (by W.~Reisig)
	From 1-bounded P/T-nets to LTSs
	From P/T-nets to Promela
	From P/T-nets to Promela (cnt.)
	From P/T-nets to Promela (cnt.)
	From P/T-nets to Promela (cnt.)
	From P/T-nets to Promela (cnt.)
	Structural Analysis via Example
	Example (cnt.)
	Example (cnt.)
	Example (cnt.)
	Structural Analysis Summary
	Extending LTSs with Data
	ELTSs
	ELTSs (cnt.)
	ELTSs (cnt.)
	ELTSs (cnt.)
	Promela and EFSMs
	Promela: Peterson's Mutex
	EFSM for Peterson's Mutex
	Notes on the Spin EFSM
	Spin EFSMs
	Stuttering
	Cause of Stuttering
	Stuttering Equivalence
	Stuttering Invariance
	Stuttering and Past Safety Formulas
	Benefits of Stuttering Invariance

