
T–79.4301 Spring 2008
Parallel and Distributed Systems
Home Exercise 2 - Deadline: 7th of April 2008 at 12:15 (strict
deadline!)
Please return your answer to the exercise before the deadline by email to:
t794301-spring08@tcs.tkk.fi. Include in your answer: Your name, stu-
dent number, email address, short answers to the exercise questions (ASCII,
PDF, or PostScript accepted). Return also any Promela models you have
created as additional email attachments, clearly indicating (using Promela
comments) the number of the question to which the file gives the answer.
(We also accept “.zip”, “.tar”, “.tar.bz2”, and “.tar.gz” archives if that is more
convenient for you.)
The home exercises are personal, no group work allowed! There are three
rounds of home exercises of 10 points each. To pass the home exercises ≥ 15
points are needed and ≥ 24 points gives a +1 to the exam grade (no effect
to exam grades 0 or 5).

1. We are designing a communication protocol with a unidirectional ring
topology and want to model the initial design with Promela. The sys-
tem consists of three nodes numbered 0, 1, and 2 and denoted node(0),
node(1), and node(2), respectively.

The only means of communication in the system between nodes is pro-
vided by a unidirectional ring of message channels. The node i can only
directly send messages to its following neighbour node i + 1 (modulo
3). Thus the node node(i) can thus send messages to a message chan-
nel in_chan[(i+1)% 3] which are read by node node((i+1)% 3). All
channels have a capacity of 1 message, and the send mechanism is such
that sending to a full channel will block inside the sender procedure
and prohibit the sending node from proceeding. In addition, there is
no direct capability to check whether a send would block as this is not
implemented in the underlying hardware system.

Each node has a sending user attached to it which wants to send mes-
sages consisting of two fields: (data, to_node), where data denotes
that the packet to be sent is a data packet destined to the receiving
user attached to node to_node. The actual data sent is abstracted away
from the Promela model of the protocol. The nodes must now relay
packets to other nodes in order to implement a usable data transport
between all the sending and receiving users attached to the nodes.

First create a Promela model of a ring protocol containing no flow-
control mechanism to avoid deadlocking of the system due to all the



message channels being full.

Find the deadlock of your system using Spin and give a log of the
verification run. Please return your final Promela model. (4 p.)

2. In the second phase we add a distributed flow-control mechanism to
the protocol working as follows. A new protocol message (hole,0)

called a hole is added to the system and initially the message channels
are initialized with 2 holes (see Promela code of the init proctype

below). They are used to count the amount of free capacity available
in the three channels in a distributed fashion.

If a node does not want to send anything and receives a hole message, it
forwards the hole to the next node like any other messages not destined
to it. If the node wants to send a new message from the user attached
to it, it must wait until it receives a hole message. When a hole is
received, it is not forwarded but instead the data message is sent in its
place. Only when a message is delivered to the receiving user at the
destination node, a new hole is generated.

Model this ring protocol with the distributed flow-control using holes
as described above in Promela. Prove that your system is deadlock free
using Spin and give a log of the verification run. Please return also
your final Promela model. (5 p.)

Hint: It is easy to overflow the capacity of Spin with this part. Be very
careful in your modelling decisions (no extra variables, using atomic if
you run into capacity problems, etc.).

3. Consider the following generic question: Suppose you have some uni-
directional ring protocol which you have model checked to be deadlock
free for N = 3 nodes. (Any protocol, that is not the one discussed
above.) Is it the case that the protocol is also deadlock free for N = 4
nodes? (1p.)



/* Message types used by the protocol. Do not change. */

mtype = {data, hole};

chan in_chan[3] = [1] of { mtype, byte };

chan from_user[3] = [0] of { mtype, byte };

chan to_user[3] = [0] of { mtype, byte };

/* A process modelling the sending user. Do not change. */

proctype sending_user(byte id) {

/* Send a message randomly to one of the nodes. */

do

:: from_user[id] ! data, 0

:: from_user[id] ! data, 1

:: from_user[id] ! data, 2

od

}

/* A process modelling the receiving user. Do not change. */

proctype receiving_user(byte id) {

byte message_to;

mtype message_type;

do

:: to_user[id] ? message_type, message_to;

atomic {

assert((message_type == data) && (message_to == id));

message_to = 0;

message_type = 0;

}

od

}

/* A simple ring protocol in Promela */

proctype node(byte id) {

/* Add your Promela model of the node here. */

/* Following line added to make a syntactically valid Promela */

/* model. Remove it first. */

skip

}



/* The init process for starting all other processes. */

init {

int id;

atomic {

id = 0;

do

:: (id < 3) ->

run node(id);

run receiving_user(id);

run sending_user(id);

id++

:: (id == 3) -> break

od;

/* Uncomment the following #define to generate the initial holes in the */

/* ring in question 2. */

/* #define QUESTION2 */

#ifdef QUESTION2

/* Send 2 holes to the channels 0,1. */

id = 0;

do

:: (id < 2) -> in_chan[id] ! hole, 0; id++

:: (id == 2) -> break

od

#endif

}

}


