
T–79.4301 Spring 2008
Parallel and Distributed Systems
Home Exercise 1 - Deadline: 3rd of March 2008 at 12:15 (strict
deadline!)
Please return your answer to the exercise before the deadline by email to:
t794301-spring08@tcs.tkk.fi. Include in your answer: Your name, stu-
dent number, email address, short answers to the exercise questions (ASCII,
PDF, or PostScript accepted). Return also any Promela models you have
created as additional email attachments. (We also accept “.tar”, “.tar.gz”
and “.zip”archives if that is more convenient for you.)
The home exercises are personal, no group work allowed! There are three
rounds of home exercises of 10 points each. To pass the home exercises ≥ 15
points are needed and ≥ 24 points gives a +1 to the exam grade (no effect
to exam grades 0 or 5).

1. Consider the design of an elevator (lift) control logic for a building with
three floors 1, 2, and 3. We would like to model this logic in Promela
and analyze some safety features of it using the Spin model checker.

Each of the floors has just one elevator call button: call_1, call_2,
and call_3. Inside the elevator there are also three buttons for select-
ing to which floor the user wants the elevator to take her/him: go_1,
go_2, and go_3.

The elevator doors can be opened by sending a message called open to
the elevator and closed by sending the message close. The elevator
can be commanded to move one floor up by sending it the message up

and one floor down by sending the message down.

In the initial state of the system the elevator is at floor 1 and its doors
are closed.

You are given a partial Promela model (below) where the button pushes
at floors are transmitted to the controller through a channel called
floor_buttons, button pushes in the elevator are transmitted to the
controller through a channel called elevator_buttons and messages
to the elevator are sent to a channel called commands.

a) Add the elevator controller to the Promela model in the con-

troller proctype. (Please include the full Promela model in
your answer.) (5 p.)

b) Modify the Promela model for the elevator proctype to contain
an assertion which triggers if your model sends the up command



at floor 3 or the down command at floor 1. (Please include the
full Promela model in your answer.) (1 p.)

c) Verify with Spin that the assertion does not trigger with your
elevator controller. Hint: Using only the simulation mode of Spin
is not sufficient here! (1 p.) (Please include a Spin run log in your
answer.)

d) Modify the Promela model for the elevator proctype to contain
an assertion which triggers if your model sends the up or down

command while the elevator doors are open. (Please include the
full Promela model in your answer.) (1 p.)

e) Verify with Spin that the assertion does not trigger with your
elevator controller. (Please include a Spin run log in your answer.)
(1 p.)

f) Is you controller fair: Is it possible in the Promela model that a
repeated sequence of requests call_i for an elevator at a floor i is
from some time point on ignored without the elevator ever stop-
ping at floor i? (Answer: Just a short English language analysis
of your model, four sentences at maximum.) (1 p.)



/* Partial Promela model of an elevator. */
/* Available from: http://www.tcs.tkk.fi/Studies/T-79.4301/ */

mtype = { call_1, call_2, call_3,
go_1, go_2, go_3,
open, close,
up, down}

chan floor_buttons = [0] of { mtype };
chan elevator_buttons = [0] of { mtype };
chan commands = [0] of { mtype };

active proctype elevator() {
do

:: commands ? open -> printf("Elevator: opened doors.\n");
:: commands ? close -> printf("Elevator: closed doors.\n");
:: commands ? up -> printf("Elevator: moved up one floor.\n");
:: commands ? down -> printf("Elevator: moved down one floor.\n");

od
}

/* Simulates random pushing of call buttons. */
active proctype floor_button_pusher() {

do
:: floor_buttons ! call_1;
:: floor_buttons ! call_2;
:: floor_buttons ! call_3;

od
}

/* Simulates random pushing of elevator buttons. */
active proctype elevator_button_pusher() {

do
:: elevator_buttons ! go_1;
:: elevator_buttons ! go_2;
:: elevator_buttons ! go_3;

od
}

active proctype controller() {
int at = 1;
bool closed = true;

/* Implement your own elevator controller here! */

}


