
T–79.4301 Spring 2007
Parallel and Distributed Systems
Tutorial 1 - Mon Jan 22, 2007 14:15
Note: To get started, this tutorial is a demonstration round. The next
exercises can also contain a mixture of demos and regular tutorial exercises.

1. Dekker’s mutual exclusion algorithm (1962) tries to ensure that at most
one of two processes is in a critical section at any time. The algorithm
is described by the following pseudo-code:

// Dekker’s mutex algorithm, two parallel processes 0 and 1

var flag: array[0..1] of boolean;
var turn: 0;

// flag is initialized to all false,
// and turn has the initial value 0
// The algorithm for process i then becomes:

// Infinite loop
while true do

// [noncritical section]

// i is my index, j is the other process
i := mypid(); j=1-mypid();
flag[i] := true;
// [trying section]
while flag[j] do

if turn = j then
begin

flag[i] := false;
while turn = j do idle enddo;
flag[i] := true;

end;
endif;

enddo;

// [critical section]
turn := j;
flag[i] := false;

enddo;

a) Model Dekker’s algorithm in Promela, the input language of the
model checker Spin (http://www.spinroot.com/).

http://www.spinroot.com/


b) Add an assertion mechanism into the code which triggers when
both processes are in the critical section at the same time.

c) Check with Spin whether Dekker’s algorithm guarantees mutual
exclusion for two processes.

d) In the book “M. Raynal. Algorithms for mutual exclusion. North
Oxford Academic Publishers Ltd., 1986.” the following simpler
variant of the inner loop is suggested:

if flag[j] then begin
if turn = j then

begin
flag[i] := false;
while turn = j do idle enddo;
flag[i] := true;

end;
endif;
end;

endif;

Does the modified algorithm work? (Hint: Use Spin.)

e) Does Peterson’s algorithm (below) guarantee mutual exclusion?

// Peterson’s mutex algorithm, two parallel processes 0 and 1
var flag: array[0..1] of boolean;
var turn: 0;
// flag is initialized to all false,
// and turn has the initial value 0
// The algorithm for process i then becomes:

// Infinite loop
while true do

// [noncritical section]

// i is my index, j is the other process
i := mypid(); j=1-mypid();
flag[i] := true;
// [trying section]
turn := i;
while (flag[j] = true and turn = i) do idle enddo;

// [critical section]

flag[i] := false;
enddo;


