~ 1-79.4301 Parallel and
Distributed Systems (4 ECTS)

T-79.4301 Rinnakkaiset ja hajautetut jarjestelmat (4 op)

Lecture 9
26th of March 2007

Keijo Heljanko
Kei] o. Hel j anko@Kkk. f i

é

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 1/2¢

Semantics of Past Formulas (recap)

Recall from Lecture 8 that the semantics of past formulas

are defined at each index i in a word Tt € (2°F)* such that
TT= XpX1X2...Xn as follows:

— P & p_holds in X; for p € AP.

=P e TEPL

=Yy & i>0andm =gy

=1V & T EYLorm =go.

—1SYP, & J0< j<isuchthat W = Py and
=Yy forall j <n<i.

A A A A A

e

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 2/2:

Alternative Semantic Definition

We can alternatively define the semantics of nEY W1
and Tt = 1 S, recursively as follows:

mi =0

= 0 FE Y Uy

o0 = P1SYz & =P
li>0_:

s EYY & Tl
s EPISY, & =PV (WIAY (W1SY)))

é

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 3/24

De Morgan Rules

The De Morgan rules are as follows:

(—P1) < Y

(W1V2) & (—P1) A(—2)
-(Yd) & Z(Ys)
(Ow1) & H(—Ys)
(W1SY2) < (—W1) T (—Wp)

We also have the duals of the De Morgan rules above,
e.g., 7(ZY1) < Y .

é

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 4/2+

Semantics in a Path

A formula G (¢) (“always” §), where ¢ is a past formula is
called a past safety formula. The semantics in a path

TT= XpX1X2...Xn IS defined as follows:

m 1= G () iff for all indexes 0 <'i < nit holds that
= o

or alternatively:

m T~ G () iff there is an index O < i < n such that
= 0.

e

\ HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 5/2¢

Semantics in a Kripke Structure

m Recall the definition of a Kripke structure
M = (S,s°,R,L) from Lecture 1.

m An execution 0 of M is a sequence of states

0O =91...5 such that g = % (starts from the initial
state), and (§_1,5) € Rfor all 1 <i < n (follows the
arcs of the Kripke structure).

m An execution path Ttof M is a sequence of labels
TT= XoX1...Xn, such that X; = L(S) for some
execution 0 = Sy ...Sy of M.

e

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 6/2:

Semantics in a Kripke Structure (cnt.)

m The formula ¢ holds in M, denoted M
holds for every execution path 1T 0f M.

m Or alternatively: the formula ¢ does not hold in M,

— ¢ iff TT

denoted M (£~ ¢ iff there is an execution path

TT= XgX1 ... Xn Such that T = —¢.

= Such a path ¢ is called a counterexample to

property ¢, and the corresponding execution 0 is

called the counterexample execution.

e

\ HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 7/22

Examples

m G(—(crgAcry)): processes O and 1 are never at the
same time In the critical section.

m G (starts = O (ignition)): if the car starts the
Ignition key has been turned in the past.

m G (alarm = O(crash)): an alarm is given only if the
system has crashed in the past.

m G(alarm = (—resetScrash)): an alarm is given
only if the system has crashed in the past and no
reset has been applied since.

m G(alarm = Y (crash)): if an alarm is given, the
% system crashed at the previous time step.

\ﬁ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 8/2:

Implementing the semantics

m To find a safety violation, we need to observe the
system state after each step it makes, and report an

error at the first index i such that Tt = —¢.

m We do this by using two boolean variables for each
subformula Y. One bit to store the current value of Y
and another bit to remember the value of Y at the

previous time step, denoted by ',

m \We can do the calculation of the new values for all
the bits as shown in the following slides.

m If after running the system for I steps the top-level
formula —¢ evaluates to true we need report that the

% past safety formula G () is violated.

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 9/2:

Implementing the semantics (cnt.)

m We will now evaluate the subformula value U in
pottom-up order. Namely, the evaluation order must
pe such that both subformulas Y1 and Qo of Y have
peen evaluated at the current state S before U Is
evaluated.

m Each subformula W must also be evaluated exactly
once at each §.

m The implementation is based on the alternative
recursive semantic definition.

m To know the contents of the next two slides will not
be part of the exam requirements.

4

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 10/2:

The Translationat 1 =0

Formula | Update rules at1 =0
Y e AP | = evaluate(s,y)
P (W=
PV | P=y1Vp
Y s P = L (false)
PSSy (Y=o
Where evaluate(s;,) evaluates the atomic proposition

In the current state S.

e

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 11/2:

The Translationat 1 >0

Formula) | Update rules at1 > 0O
P e AP | Y/ =y; @ = evaluate(s,)
= /

L
Y =y; =y
PV (W= W=V
L
L

Y Yy = =
PSPz W =y w=wV (WiAY)

Where (] (J) is the value of Y1 () at the previous time

step, and evaluate(s,) evaluates the atomic proposition
U in the current state §.

e

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 12/2:

History-variables Implementation

m The implementation of the history variables method
can be made extremely fast.

m The memory overhead is tiny, just two bits per
subformula, out of which the /’ variables are just
temporaries needed to evaluate the new U variables.

m |t can be used as a fast, low-overhead runtime
verification observer for safety properties. The same
observer can also be used in combination with a
model checker to check safety properties.

m Unfortunately the procedure is not implemented Iin
most model checkers, so it has to be usually

% Implemented by hand.

\ HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 13/2

Liveness

m Liveness properties are properties of systems that
are characterised by the intuitive formulation:
“eventually something good happens”.

m Another intuition is the following: For finite state
systems all counterexamples demonstrating that a
liveness property does not hold are of the form

I : :
L2 d wherelisa non-empty execution of the

system starting from state S and ending in state S,
an “nothing good” happens in |.

m Thus, intuitively, liveness properties specify what
kinds of loops in the system behavior are allowed for

% correct implementations.
\ﬁ HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 14/2-

Liveness - Examples

m All executions of the system will pass through a state
where Init_done holds. (An eventuality property.)

m |f a data request is sent to a server, the server will
always eventually reply with the data. (A progress
property: “always eventually” here means “after and
arbitrary long but nevetheless a finite number of time

steps”.)

e

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 15/2:

Liveness - Examples (cnt.)

m Both process 0 and process 1 are scheduled
Infinitely often.

m |f both process 0 and process 1 are scheduled
Infinitely often then the request of process O to enter
the critical section will always eventually be followed
by process 0 entering the critical section. (This is
often called model checking under fairness. Namely,
If the assumption about fair scheduling holds, then
the systems satisfies the required progress property.)

m |f process 0 is in the critical section, it will leave the
critical section after an unbounded but finite number

% of time steps.
q

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 16/2:

Liveness

m A practical way of specifying liveness properties is to
use the temporal logic LTL (linear temporal logic), or
Its extension PLTL (linear temporal logic with past).

m In LTL we use operators like:

m X1 (“next”), the future time correspondent to
Y Y4, and

= 1 U Yo (“until”), the future time correspondent to

P1 SYo.

m The semantics of LTL Is outside the scope of this
course.

e

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 17/2:

Liveness (cnt.)

m How to specify liveness properties in LTL and how to
Implement their model checking is covered in the
course: T-79.5301 Reactive Systems
http://ww.tcs. hut.fi/Studies/T-79.5301/

m Spin has a full blown LTL model checker (as actually
most model checkers do these days), so the tool
support is available.

e

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 18/2:

http://www.tcs.hut.fi/Studies/T-79.5301/

Model Based Testing

m Suppose you have verified safety properties of your
system implementation G using model checking
methods, and you want to implement it as a concrete
program P.

m Can we use automated testing to increase our
confidence that P satisfies all safety properties
proved from the “golden design” model G?

m The answer is yes. The approach presented for
doing so is called model based testing (MBT).

g

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 19/2:

Simplified Testing Framework

To keep things simple we add a couple of restrictions
needed to keep our intro to MBT short. We also keep the
discussion a bit informal.

m Assume G is an LTS with alphabet 2 divided into
Inputs 2| and outputs 2.

m Let both G and P behave in an input-internal-output
loop for each test step I as follows:

1. Wait for an input & € 2, all inputs are accepted
and acted on.

2. Do some finite sequence of internal T-moves.
(Non-determinism allowed!)

% 3. Send an output b € 2.
\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 20/2:

Simplified Testing Framework

m Because of the assumptions above, any sequence
a=apd;...an € 2| is a valid input test sequence for
both G and P.

m Now feed the test sequence to P. It produces the
output sequence b =bgb;...by € 24,

m If aghpaybs ... anby € traces(G) the test verdict is fall,
otherwise pass.

e

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 21/2:

Test Verdict Computation

m Intuitively, if aghgaibs . .. anby & traces(G), then the
concrete program P can after some prefix
apbpayby...... a; with | < ndo by, and this cannot be
matched by any execution of the golden design G.

m However, in this case P might also violate the safety
properties proved for G, and therefore we’d better
give a fall test verdict.

e

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 22/2:

Test Verdict Computation (cnt.)

m To check whether aglpaib; ... anb, € traces(G), we
can see agbpab1...anbn as an LTS A, and G as the
specification LTS, and then check A <iy G. If A <iy G

we give test verdict pass, otherwise fall.

m As you may recall, checking A <;; G usually involves
determinising G.

m Thus if G has |G| states, the determinised version
can have exponentially more states, namely 2lGl,

m By employing the so called on-the-fly determinisation
technique, the memory needed to check A <;; G can
% be bounded by the number of states |G|.

a

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 23/2:

Model Based Testing

m The first commercial model based testing tools have
become available.

m For example, the testing tools by Conformiqg
(http://ww. confornig.com) contain automated test
generation and execution with MBT techniques.

m For more on model based testing, see the
course: T-79.5304 Formal Conformance Testing
http://ww.tcs. hut.fi/Studies/T-79.5304/

e

\ HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory for Theoretical Computer Science T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 — 24/2:

http://www.conformiq.com/
http://www.tcs.hut.fi/Studies/T-79.5304/

	Semantics of Past Formulas (recap)
	Alternative Semantic Definition
	De~Morgan Rules
	Semantics in a Path
	Semantics in a Kripke Structure
	Semantics in a Kripke Structure (cnt.)
	Examples
	Implementing the semantics
	Implementing the semantics (cnt.)
	The Translation at $i=0$
	The Translation at $i>0$
	History-variables Implementation
	Liveness
	Liveness - Examples
	Liveness - Examples (cnt.)
	Liveness
	Liveness (cnt.)
	Model Based Testing
	Simplified Testing Framework
	Simplified Testing Framework
	Test Verdict Computation
	Test Verdict Computation (cnt.)
	Model Based Testing

