
AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

T–79.4301 Parallel and
Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 5
19th of February 2007

Keijo Heljanko
Keijo.Heljanko@tkk.fi

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 1/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Home Exercise 1

The home exercise 1 is now available through the
course homepage:
http://www.tcs.tkk.fi/Studies/T-79.4301/

The exercise is to be done individually, and the topic
is modelling an elevator controller in Promela and
verifying some safety properties of it with Spin

The deadline is on Monday 12.3 at 12:15

The deadline is strict!

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 2/24

http://www.tcs.tkk.fi/Studies/T-79.4301/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Parallel Composition

Recall the definition of the parallel composition
operator

f
from the Lecture 4

Compute the parallel composition L = L1
f

L2
f
L3,

where the LTSs L1, L2, and L3 are given on the next
slide

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 3/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Parallel Composition (cnt.)

t3

Σ2 = {a,b}

b

τ

L2 :

a

t1

t2

Σ1 = {a,c}

τ

L3 :
u1

u3

u4

Σ3 = {b,c}

c

L1 :

τ a

s1

s4

s3

s2

u2

c

b

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 4/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Example: Result L = L1
f
L2

f
L3

L : Σ = {a,b,c}

c

a

a

b

τ
τ

τ

τ

τ
bτ

a

τ

τ
τ

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 5/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Reachability Analysis

Reachability analysis is a way to implement model
checking

We have now shown how parallel composition of
LTSs is done directly based on the definition

Most model checking algorithms are based on an
algorithm which implements the generation of a
graph containing all the reachable global states of
the system

Let’s now give this algorithm in an abstract setting,
independent of the used model of concurrency:
Thus the algorithm works for, e.g., the parallel
composition of LTSs or a Promela

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 6/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Reachability Graph

We want to generate a graph G = (V,T,E,v0),
where

V is the set of reachable global states of the system,

T is the set of executable global transitions of the
system,

E ⊆V ×T ×V is the set of executable global state
changes of the system (arcs/edges of the
reachability graph), and

v0 ∈V is the initial global state of the system.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 7/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Reachability Graph: Subroutines

We need the following subroutines:
enabled(v): Given a global state v it returns the
list of all global transitions t which are enabled in
v
v’ = fire(v,t): Given a global state v, and a
global transition t which is enabled at v, it returns
the global state v’ reached from v by firing t

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 8/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Reachability Graph Algorithm (part 1)

graph RG; /* Global - empty reachability graph */

reachability_graph(state v_0) {

RG.init(); /* Initialize data structures */

RG.add_node(v_0); /* Add initial state to the RG */

RG.mark_initial(v_0); /* Mark the initial state */

search(v_0); /* Process initial state */

/* RG now contains the reachability graph */

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 9/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Reachability Graph Algorithm (part 2)

search(state v) {

state v’;

transition t;

forall t in enabled(v) {

/* Optionally add here: code to add t to T */

v’ = fire(v,t); /* firing t at v results in v’ */

if !RG.has_node(v’) { /* v’ already processed? */

RG.add_node(v’); /* Add new state v’ to V */

search(v’); /* Process v’ */

}

RG.add_edge(v,t,v’); /* Add arc (v,t,v’) to E */

}

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 10/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Implementation Issues

Modern model checkers such as Spin can handle
reachability graphs with the number of reachable
states in tens of millions

The most time and memory critical routines are
RG.has_node(v’) and RG.add_node(v’)

Usually the state storage inside model checker is
very carefully engineered to minimize memory usage

In more complex system models the routine
enabled(v) can become the bottleneck

In many cases the line RG.add_edge(v,t,v’) can
be removed if only state properties are of interest.
Also, usually enabled(v) can be recomputed at will

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 11/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Implementation Issues (cnt.)

The algorithm presented is depth-first search (DFS),
which is the default in Spin

Also breadth-first search (BFS) is often implemented
as it guarantees shortest paths to assertion failure
states

If the set of nodes is too large to fit in the memory,
database techniques (B-trees etc.) can be used to
implement RG.has_node(v’) and
RG.add_node(v’). However, this slows down
search by several orders of magnitude.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 12/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Adding Assertion Checks

search(state v) {

state v’; transition t;

if some_assert_fails_in(v) {

print_counterexample(v); exit(1); /* Terminate */

}

forall t in enabled(v) { /* evaluate all asserts */

v’ = fire(v,t); /* firing t at v results in v’ */

if !RG.has_node(v’) {

RG.add_node(v’); /* Add new state to V */

search(v’); /* Process it later */

}

}

}

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 13/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Spin Example

$ spin -a peterson3

$ gcc -o pan pan.c

$./pan

hint: this search is more efficient if pan.c is compiled -DSAFETY

(Spin Version 4.2.6 -- 27 October 2005)

+ Partial Order Reduction

Full statespace search for:

never claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid end states +

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 14/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Spin Example (cnt.)

State-vector 28 byte, depth reached 615, errors: 0

2999 states, stored

806 states, matched

3805 transitions (= stored+matched)

0 atomic steps

hash conflicts: 2 (resolved)

2.622 memory usage (Mbyte)

unreached in proctype user

line 43, state 30, "-end-"

(1 of 30 states)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 15/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Spin Example (cnt.)

The line: “State-vector 28 byte, depth
reached 615, errors: 0” tells us that each
state requires 28 bytes, the DFS search stack depth
was 615 at maximum, and that Spin found no errors
in the model

The line “2999 states, stored” gives the number
of states in the reachability graph

The text “3805 transitions” gives the number of
arcs in the reachability graph

The line “2.622 memory usage (Mbyte)” gives the
total memory usage needed for the reachability
graph generation

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 16/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Bitstate Hashing

For analyzing systems where it is not possible to
store the states of the reachability graph in the
memory, Spin contains additional algorithms

These algorithms are probabilistic in the following
sense: All bugs they report are real bugs but if they
do not find bugs, there is still some probability that
the system is incorrect

The best known probabilistic method in Spin is called
Bitstate Hashing

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 17/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Bitstate Hashing (cnt.)

In basic bitstate hashing the hash table storing the
states is replaced with a bit-array a of, e.g.,
1 Gigabyte of size. The bits are thus indexed
a[0],a[1], . . . ,a[88589934591], and are initially 0

From each state v two hash functions are computed:
h1(v) and h2(v), the domain of both is
0,1, . . . ,88589934591.

If both a[h1(v)] = 1 and a[h2(v)] = 1, then we
assume the state v is already in the reachability
graph, otherwise we are sure it has not been seen.

The state v is added to the reachability graph by
setting both a[h1(v)] and a[h2(v)] to 1.

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 18/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Bitstate Hashing (cnt.)

Bitstate hashing sometimes enables to find bugs in
large systems

If no bugs are found, the result is inconclusive.

Bitstate hashing should be used as the last resort
when all other ways of obtaining verification results
have failed

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 19/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Stateless Search

A time-memory tradeoff

Basic idea: Consider a variant of the DFS search
algorithm where as the last line of search(v) the
following line has been added:
RG.remove_node(v); /* V is no longer in
DFS search stack, remove from RG to save
memory */

This variant will also eventually terminate, and
will detect all assertion violations
In the reachability graph has |V| nodes, the time

needed to terminate might be O(|V||V|)

Not feasible in practice

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 20/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Statespace Caching

Statespace caching: Variant of the above, where
states are removed from the reachability graph only
when running out of memory

Still all states in the DFS search stack are stored fully
to guarantee termination

Works for some simple systems

Very unpredictable runtime

Not implemented in (main release version of) Spin

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 21/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Symbolic Model Checking

There are also model checking methods which use
symbolic representations of the reachability graph
instead of storing each state separately

As a trivial example, if the system state vector
contains three bits x2, x1, and x0, a Boolean formula
x2∨ (x1∧¬x0) can be used to represent the
reachable set of states: {010,100,101,110,111}

Ordered binary decision diagrams (OBBDs) are
often used to represent Boolean formulas in model
checkers. Symbolic model checkers are the topic of
the course: T–79.5302 Symbolic Model Checking
http://www.tcs.hut.fi/Studies/T-79.5302/

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 22/24

http://www.tcs.hut.fi/Studies/T-79.5302/

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Reachability Graph, Definition

Assume that we are give the following mathematical
functions:

enabled(v): Given a global state v, it returns the set
of global transitions t that are enabled in v

fire(v, t): Given a global state v, and a global
transition t ∈ enabled(v), it returns the global state v′

reached from v by firing t

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 23/24

AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Reachability Graph, Definition (cnt.)

Reachability graph G = (V,T,E,v0) is the graph with the
smallest sets of nodes V, global transitions T, and edges
E such that:

v0 ∈V, where v0 is the initial state of the system, and

if v in V, then for all t ∈ enabled(v) it holds that
t ∈ T, fire(v, t) ∈V, and (v, t,fire(v, t)) ∈ E.

(Note: We could alternatively do the definition above by

induction to obtain the same result.)

T–79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 24/24

	Home Exercise 1
	Example: Parallel Composition
	Example: Parallel Composition (cnt.)
	Example: Result $L = L_1 �igparallel L_2 �igparallel L_3$
	Reachability Analysis
	Reachability Graph
	Reachability Graph: Subroutines
	Reachability Graph Algorithm (part 1)
	Reachability Graph Algorithm (part 2)
	Implementation Issues
	Implementation Issues (cnt.)
	Adding Assertion Checks
	Spin Example
	Spin Example (cnt.)
	Spin Example (cnt.)
	Bitstate Hashing
	Bitstate Hashing (cnt.)
	Bitstate Hashing (cnt.)
	Stateless Search
	Statespace Caching
	Symbolic Model Checking
	Reachability Graph, Definition
	Reachability Graph, Definition (cnt.)

