T–79.4301 Parallel and Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 5
19th of February 2007

Keijo Heljanko
Keijo.Heljanko@tkk.fi
Home Exercise 1

- The home exercise 1 is now available through the course homepage:
 http://www.tcs.tkk.fi/Studies/T-79.4301/
- The exercise is to be done individually, and the topic is modelling an elevator controller in Promela and verifying some safety properties of it with Spin
- The deadline is on Monday 12.3 at 12:15
- The deadline is strict!
Example: Parallel Composition

- Recall the definition of the parallel composition operator || from the Lecture 4
- Compute the parallel composition $L = L_1 || L_2 || L_3$, where the LTSs L_1, L_2, and L_3 are given on the next slide
Example: Parallel Composition (cnt.)

$L_1 : \Sigma_1 = \{a, c\}$

$L_2 : \Sigma_2 = \{a, b\}$

$L_3 : \Sigma_3 = \{b, c\}$

T-79.4301 Parallel and Distributed Systems, Keijo Heljanko, Spring 2007 – 4/24
Example: Result $L = L_1 \parallel L_2 \parallel L_3$

$L : \quad \Sigma = \{a, b, c\}$
Reachability Analysis

- Reachability analysis is a way to implement model checking.
- We have now shown how parallel composition of LTSs is done directly based on the definition.
- Most model checking algorithms are based on an algorithm which implements the generation of a graph containing all the reachable global states of the system.
- Let’s now give this algorithm in an abstract setting, independent of the used model of concurrency: Thus the algorithm works for, e.g., the parallel composition of LTSs or a Promela.
Reachability Graph

- We want to generate a graph $G = (V, T, E, v^0)$, where
- V is the set of reachable global states of the system,
- T is the set of executable global transitions of the system,
- $E \subseteq V \times T \times V$ is the set of executable global state changes of the system (arcs/edges of the reachability graph), and
- $v^0 \in V$ is the initial global state of the system.
Reachability Graph: Subroutines

- We need the following subroutines:
 - \texttt{enabled}(v): Given a global state \(v\) it returns the list of all global transitions \(t\) which are enabled in \(v\)
 - \(v' = \text{fire}(v, t)\): Given a global state \(v\), and a global transition \(t\) which is enabled at \(v\), it returns the global state \(v'\) reached from \(v\) by firing \(t\)
Reachability Graph Algorithm (part 1)

graph RG; /* Global - empty reachability graph */

reachability_graph(state v_0) {

 RG.init(); /* Initialize data structures */
 RG.add_node(v_0); /* Add initial state to the RG */
 RG.mark_initial(v_0); /* Mark the initial state */
 search(v_0); /* Process initial state */

 /* RG now contains the reachability graph */
Reachability Graph Algorithm (part 2)

```plaintext
search(state v) {
    state v';
    transition t;
    forall t in enabled(v) {
        /* Optionally add here: code to add t to T */
        v' = fire(v, t); /* firing t at v results in v' */
        if !RG.has_node(v') { /* v' already processed? */
            RG.add_node(v'); /* Add new state v' to V */
            search(v'); /* Process v' */
        }
    }
    RG.add_edge(v, t, v'); /* Add arc (v, t, v') to E */
}
```
Implementation Issues

- Modern model checkers such as Spin can handle reachability graphs with the number of reachable states in tens of millions.
- The most time and memory critical routines are `RG.has_node(v')` and `RG.add_node(v')`.
- Usually, the state storage inside a model checker is very carefully engineered to minimize memory usage.
- In more complex system models, the routine `enabled(v)` can become the bottleneck.
- In many cases, the line `RG.add_edge(v,t,v')` can be removed if only state properties are of interest. Also, usually `enabled(v)` can be recomputed at will.
Implementation Issues (cnt.)

- The algorithm presented is depth-first search (DFS), which is the default in Spin.
- Also breadth-first search (BFS) is often implemented as it guarantees shortest paths to assertion failure states.
- If the set of nodes is too large to fit in the memory, database techniques (B-trees etc.) can be used to implement `RG.has_node(v')` and `RG.add_node(v')`. However, this slows down search by several orders of magnitude.
Adding Assertion Checks

search(state v) {
 state v'; transition t;
 if some_assert_fails_in(v) {
 print_counterexample(v); exit(1); /* Terminate */
 }
 forall t in enabled(v) { /* evaluate all asserts */
 v' = fire(v,t); /* firing t at v results in v' */
 if !RG.has_node(v') {
 RG.add_node(v'); /* Add new state to V */
 search(v'); /* Process it later */
 }
 }
}
Spin Example

$ spin -a peterson3
$ gcc -o pan pan.c
$./pan

hint: this search is more efficient if pan.c is compiled -DSAFEY

(Spin Version 4.2.6 -- 27 October 2005)
+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +
Spin Example (cnt.)

State-vector 28 byte, depth reached 615, errors: 0
2999 states, stored
806 states, matched
3805 transitions (= stored+matched)
0 atomic steps
hash conflicts: 2 (resolved)

2.622 memory usage (Mbyte)

unreached in proctype user
line 43, state 30, "-end-
(1 of 30 states)
Spin Example (cnt.)

- The line: “State-vector 28 byte, depth reached 615, errors: 0” tells us that each state requires 28 bytes, the DFS search stack depth was 615 at maximum, and that Spin found no errors in the model.

- The line “2999 states, stored” gives the number of states in the reachability graph.

- The text “3805 transitions” gives the number of arcs in the reachability graph.

- The line “2.622 memory usage (Mbyte)” gives the total memory usage needed for the reachability graph generation.
Bitstate Hashing

- For analyzing systems where it is not possible to store the states of the reachability graph in the memory, Spin contains additional algorithms.

- These algorithms are probabilistic in the following sense: All bugs they report are real bugs but if they do not find bugs, there is still some probability that the system is incorrect.

- The best known probabilistic method in Spin is called Bitstate Hashing.
Bitstate Hashing (cnt.)

- In basic bitstate hashing the hash table storing the states is replaced with a bit-array a of, e.g., 1 Gigabyte of size. The bits are thus indexed $a[0], a[1], \ldots, a[88589934591]$, and are initially 0.
- From each state v two hash functions are computed: $h_1(v)$ and $h_2(v)$, the domain of both is $0, 1, \ldots, 88589934591$.
- If both $a[h_1(v)] = 1$ and $a[h_2(v)] = 1$, then we assume the state v is already in the reachability graph, otherwise we are sure it has not been seen.
- The state v is added to the reachability graph by setting both $a[h_1(v)]$ and $a[h_2(v)]$ to 1.
Bitstate Hashing (cnt.)

- Bitstate hashing sometimes enables to find bugs in large systems
- If no bugs are found, the result is inconclusive.
- Bitstate hashing should be used as the last resort when all other ways of obtaining verification results have failed
Stateless Search

- A time-memory tradeoff
- Basic idea: Consider a variant of the DFS search algorithm where as the last line of `search(v)` the following line has been added:
  ```
  RG.remove_node(v); /* V is no longer in DFS search stack, remove from RG to save memory */
  ```
- This variant will also eventually terminate, and will detect all assertion violations
- In the reachability graph has $|V|$ nodes, the time needed to terminate might be $O(|V|^{|V|})$
- Not feasible in practice
Statespace Caching

- Statespace caching: Variant of the above, where states are removed from the reachability graph only when running out of memory.
- Still all states in the DFS search stack are stored fully to guarantee termination.
- Works for some simple systems.
- Very unpredictable runtime.
- Not implemented in (main release version of) Spin.
Symbolic Model Checking

- There are also model checking methods which use symbolic representations of the reachability graph instead of storing each state separately.

- As a trivial example, if the system state vector contains three bits x_2, x_1, and x_0, a Boolean formula $x_2 \lor (x_1 \land \neg x_0)$ can be used to represent the reachable set of states: \{010, 100, 101, 110, 111\}

- *Ordered binary decision diagrams* (OBBDs) are often used to represent Boolean formulas in model checkers. Symbolic model checkers are the topic of the course: T–79.5302 Symbolic Model Checking [http://www.tcs.hut.fi/Studies/T-79.5302/]
Reachability Graph, Definition

Assume that we are given the following mathematical functions:

- \(\text{enabled}(\nu) \): Given a global state \(\nu \), it returns the set of global transitions \(t \) that are enabled in \(\nu \)

- \(\text{fire}(\nu, t) \): Given a global state \(\nu \), and a global transition \(t \in \text{enabled}(\nu) \), it returns the global state \(\nu' \) reached from \(\nu \) by firing \(t \)
Reachability graph $G = (V, T, E, v^0)$ is the graph with the smallest sets of nodes V, global transitions T, and edges E such that:

- $v^0 \in V$, where v^0 is the initial state of the system, and
- if v in V, then for all $t \in enabled(v)$ it holds that $t \in T$, $fire(v, t) \in V$, and $(v, t, fire(v, t)) \in E$.

(Note: We could alternatively do the definition above by induction to obtain the same result.)