T-79.4301 Spring 2007
Parallel and Distributed Systems

Home Exercise 3 - Deadline: 16th of April 2007 at 12:15 (strict
deadline!)

Please return your answer to the exercise before the deadline by email to:
t794301-spring07@tcs.tkk.fi. Include in your answer: Your name, stu-
dent number, email address, short answers to the exercise questions (ASCII,
PDF, or PostScript accepted). Return also any Promela models you have
created as additional email attachments, clearly indicating (using Promela
comments) the number of the question to which the file gives the answer. (We
also accept “.tar”, “.tar.bz2”, and “.tar.gz” archives if that is more convenient
for you.)

The home exercises are personal, no group work allowed! There are three
rounds of home exercises of 10 points each. To pass the home exercises > 15
points are needed and > 24 points gives a +1 to the exam grade (no effect
to exam grades 0 or 5).

1. We are designing a microprocessor containing N > 1 independent ex-
ecution units (cores) numbered 0,1,..., N — 1 and denoted core(0),
core(1), ..., core(N-1). The design also contains M (1 < M < N)
floating point co-processors (FPUs) numbered 0,1,..., M — 1 and de-
noted fpu(0), fpu(l), ..., fpu(M-1). The design also includes a float-
ing point unit controller fpu_controller for handling the allocation
of the floating point co-processors to the different execution units. The
task of the controller is to ensure that no FPU is accessed by more than
one core at a time. The communication between the cores and FPUs
as well as the behaviour of the FPUs themselves have been abstracted
away from the model. The communication between the cores and the
FPU controller is modelled and is as follows.

For each execution unit core(i) (0 < i < N — 1), there exists a
channel from_core[i] sending messages from core(i) to the FPU
controller. This channel has a capacity one message and carries two
kinds of messages. When core(i) wishes to gain access to an FPU
co-processor, it first sends the message (req_fpu,any) to the FPU
controller. When the core has finished using FPU 7 (0 < j < M — 1),
it sends the message (free_fpu, j) to the controller. In a similar way,
the controller sends messages back to core(i) (0 < ¢ < N — 1) via
another channel to_core[i] with capacity 1. The messages sent via
this channel are of the form (grant_fpu,j), telling core(i) that it
can start using FPU j for some 0 < j < M — 1.



The hardware is able to implement all channel manipulation operations
available in Promela, including tests for the emptiness or fullness of
a message channel. No other means of communication are available
between the cores and the FPU controller besides the message channels
mentioned above. No new message types for these channels may be
added to the design, either.

Your task is to model the FPU controller in Promela. As a starting
point, use the partial Promela model given at the end of this exercise
sheet. (Also available on the course homepage.) Return your Promela
model as your answer. (5 p.)

. Modify your Promela model to contain assertions which triggers if more
than one core is using the same FPU at the same time.

Return a modified Promela model together with a log of a verification
run showing that a model with four cores and two floating point units
satisfies this safety property. (1 p.)

. Does your FPU controller guarantee progress of each core in the sense
that if core(i) has sent the (req_fpu,any) message to the FPU con-
troller, then the FPU controller will also eventually grant some FPU
to core(i) by sending it a message of the form (grant_fpu,j) for
some 0 < j < M — 17 If not, modify your Promela model to guarantee
this property and return it as your answer together with a verification
log showing that the assertions you added in question 2 remain valid
(for the same number of cores and FPUs). To simplify the task, you
may assume that every core that is granted access to an FPU j will
eventually send the corresponding (free_fpu, j) message back to the
FPU controller.

In all cases, explain also (in English, Swedish, or Finnish) the ideas
you used in your solution to guarantee that your model has the above
described progress property. (4 p.)



#define N 4 /* number of cores */
#define M 2 /* number of FPUs */
#define any M

/* Message types used by the protocol. Do not change. */
mtype = {req_fpu, grant_fpu, free_fpu};

/* Message channels used by the protocol. Do not change. */
chan from_core[N] = [1] of { mtype, byte };
chan to_core[N] = [1] of { mtype, byte };

/* A process modelling the FPU use of a core. Do not change. */
proctype core(byte id) {
byte my_fpu = M;

do
:: from_core[id] ! req_fpu, any;
to_core[id] ? grant_fpu, my_fpu;
atomic {
printf("MSC: Core %d using FPU %d\n", id, my_fpu);
from_corel[id] ! free_fpu, my_fpu;
my_fpu = M
}
od

}

active proctype fpu_controller() {
/* Add your Promela model of the FPU controller here. */

/* Following line added to make a syntactically valid Promela model */
/* Remove it first. */
skip

b

/* The init process for starting all other processes. */

init {
int id;
atomic {
id = 0;
do
(id < N) -> run core(id); id++
(id == N) -> break
od;
id = 0
}



