1. Find Kripke models M_a, M_b, M_c and M_d (with $AP = \{p, q\}$) such that
 a) $M_a \models Gp$ and $M_a \models G(p \Rightarrow q)$
 b) $M_b \not\models Gp$ and $M_b \models G(p \lor Yq)$
 c) $M_c \models G(p \Rightarrow (q S\neg p))$ and $M_c \models G(p \Rightarrow YY\neg p)$
 d) $M_d \not\models G(p S q)$ and $M_d \models GO q$

 (For two formulas ψ_1, ψ_2, a finite word $\pi = x_0x_1x_2\ldots x_n \in (2^{AP})^*$, and an index $0 \leq i \leq n$, $\pi^i \models \psi_1 \Rightarrow \psi_2$ holds iff $\pi^i \models (\neg \psi_1) \lor \psi_2$.)

2. Let $\varphi = G(\text{alarm} \Rightarrow O(\text{crash}))$ be a past safety formula over the atomic propositions $AP = \{\text{alarm, crash}\}$. Give a deterministic finite state automaton \mathcal{S} (over the alphabet 2^{AP}) which accepts the finite words that are counterexamples to the formula φ.

3. Demo exercise: Model the automaton \mathcal{S} in Promela by (mis-)using the never claim construction to observe the global bool variables alarm and crash, and to execute the Promela statement assert(false) when the automaton \mathcal{S} would accept the sequence observed so far.