1. Consider the following three LTSs L_1, L_2, and L_3:

$L_1 : \quad \Sigma_1 = \{a, b, c\} \quad \quad \quad L_2 : \quad \Sigma_2 = \{b, c\} \quad \quad \quad L_3 : \quad \Sigma_3 = \{a, b\}$

a) Compute the parallel composition $L = L_1 \parallel L_3$.

b) Does $L = L_1 \parallel L_3$ contain any conflicts? If it does, please give a list consisting of triples (v, t, t'), where: v is a global states of L where a conflict occurs and t, t' are a pair of global transitions of $L_1 \parallel L_3$ which are in conflict in v.

c) Does $L = L_1 \parallel L_3$ contain any deadlock? If it does, please give a list of global states of L which are deadlocks.

d) Does $L = L_1 \parallel L_3$ contain any livelocks? If it does, please give a list of global state of L in which a livelock exists.
e) Does $L = L_1 \parallel L_3$ contain a pair of independent transitions? If it does, give two global transitions which are independent.

f) Give $\text{traces}(L_3)$ as a list of sequences over Σ_3.

g) Give $\text{traces}(L_1)$ as a regular expression.

h) Give a deterministic finite automaton accepting $\Sigma_1^* \setminus \text{traces}(L_2)$.

i) Check whether $\text{traces}(L_1) \subseteq \text{traces}(L_2)$ using the automaton constructed in the previous step. If not, give a word in $\text{traces}(L_1) \setminus \text{traces}(L_2)$.