T-79.4301 Spring 2006
Parallel and Distributed Systems

Tutorial 1 - Wed Feb 1, 2006 11:15 and Fri Feb 3, 2006 14:15
Note: To get started, this tutorial is a demonstration round. The next
exercises can also contain a mixture of demos and regular tutorial exercises.

1. Dekker’s mutual exclusion algorithm (1962) tries to ensure that at most
one of two processes is in a critical section at any time. The algorithm
is described by the following pseudo-code:

// Dekker’s mutex algorithm, two parallel processes O and 1

var flag: array[0..1] of boolean;
var turn: O;

// flag is initialized to all false,
// and turn has the initial value O
// The algorithm for process i then becomes:

// Infinite loop
while true do
// [noncritical section]

// 1 is my index, j is the other process
i = mypidO; j=1-mypid(O;
flag[i] := true;
// [trying section]
while flag[j] do
if turn = j then
begin
flagl[i] := false;
while turn = j do idle enddo;
flagl[i] := true;
end;
endif;
enddo;

// [critical section]

turn := j;

flag[i] := false;
enddo;

a) Model Dekker’s algorithm in Promela, the input language of the
model checker Spin (http://www.spinroot.com/).


http://www.spinroot.com/

b) Add an assertion mechanism into the code which triggers when
both processes are in the critical section at the same time.

¢) Check with Spin whether Dekker’s algorithm guarantees mutual
exclusion for two processes.

d) In 1980 Doran and Thomas suggested the following simpler variant
of the inner loop:

if flag[j] then begin
if turn = j then
begin
flag[i] := false;
while turn = j do idle enddo;
flaglil := true;
end;
endif;
end;
endif;

Does the algorithm work after this modification?
(Hint: Use Spin.)

e) Does Peterson’s algorithm (below) guarantee mutual exclusion?

// Peterson’s mutex algorithm, two parallel processes O and 1
var flag: array[0..1] of boolean;

var turn: O;

// flag is initialized to all false,

// and turn has the initial value 0O

// The algorithm for process i then becomes:

// Infinite loop
while true do
// [noncritical section]

// i is my index, j is the other process

i = mypid(O); j=1-mypidQ;

flagl[i] := true;

// [trying section]

turn := i;

while (flagl[j] = true and turn = i) do idle enddo;

// [critical section]

flag[i] := false;
enddo;



