T–79.4301 Parallel and Distributed Systems (4 ECTS)

T–79.4301 Rinnakkaiset ja hajautetut järjestelmät (4 op)

Lecture 12

2006.04.28

Keijo Heljanko

Keijo.Heljanko@tkk.fi
Model Checking Tools

- In the following slides model checking tools other than Spin are described.
- All the tools are freely available (under various licences) unless otherwise stated.
- The comments on the strengths of the tools are highly subjective.
- See the table of model checkers at:

 http://anna.fi.muni.cz/yahoda/
NuSMV 2

- Homepage: nusmv.irst.itc.it/
- A model checker (mainly) for hardware, a remake of the SMV model checker
- BDD based symbolic model checker
- Bounded model checker
- Licence: LGPL
Java Pathfinder 2

- A model checker for Java programs
- Implementation technique: A full custom Java virtual machine
- See also other Java model checkers such as Bandera (http://bandera.projects.cis.ksu.edu/) and Bogor (http://bogor.projects.cis.ksu.edu/).
Uppaal

- A model checker for timed systems
- See also other model checkers for timed systems such as: IF (http://www-verimag.imag.fr/~async/IF/) which also handles untimed systems
SLAM

- Homepage:

- A model checker for sequential C programs (correct use of locking primitives in Windows device drivers) heavily employing abstraction

- Licence: Not available outside Microsoft

- See also: Zing
Maria

- Homepage: http://www.tcs.hut.fi/Software/maria/
- A model checker for high-level Petri nets
- Good support for LTL model checking under fairness
- Very extensive data manipulation support, quite flexible as a model checker back-end
- Licence: GPL
PROD

- Homepage: http://www.tcs.hut.fi/Software/prod/
- A model checker for high-level Petri nets (Pr/T-nets)
- Very good partial order reduction algorithms available (even better than Spin in many cases)
- A model checker for asynchronous systems in a formalism closely related to Petri nets
- Good symmetry reduction algorithms available
The Model Checking Kit

- Homepage:

 http://www.fmi.uni-stuttgart.de/szs/tools/mckit/overview.shtml

- A collection of different model checking tools behind a single interface

- Provides an easy way to try different methods on small model checking problems
Members of Model Checking Group

- Leader: Academy Research Fellow Keijo Heljanko
- Vice leader: D.Sc. (Tech.) Tommi Junttila
- Doctoral students:
 - Lic.Sc. (Tech.) Heikki Tauriainen
 - Lic.Sc. (Tech.) Misa Keinänen
 - M.Sc. (Tech.) Jori Dubrovin
- Funding for one additional doctoral student exists, post will be filled by mid-2006
- Alumni: D.Sc. (Tech.) Toni Jussila (University of Linz, Austria), D.Sc. (Tech.) Timo Latvala (University of Illinois at Urbana-Champaign)
Research Goal

The main goal of the research is to create methods and tools to enable the cost efficient development of correctly functioning software systems. The main methods are:

- **Model based software design**: The development of methods and tools that enabled software to be model checked early in the design cycle.

- **Bounded model checking**: An efficient symbolic model checking method employing techniques from computational logic.

- **Symbolic partial order methods**: Creating methods combining the theory of concurrency with symbolic model checking methods.
Teaching of Verification

- T–79.4301 Parallel and Distributed Systems, Spring
- T–79.5301 Reactive Systems, Spring
- T–79.5302 Symbolic Model Checking, every second year, next time Autumn 2007
- T–79.5303 Safety Critical Systems, given by specialist teacher from the industry, Spring
- T–79.5304 Formal Conformance Testing, given by specialist teacher from the industry, every second year, next time Autumn 2006
- T–79.5305 Formal Methods, every second year, next time Autumn 2006