
T–79.4301 Spring 2006
Parallel and Distributed Systems
Home exercise 1 – Deadline: Friday, 17th of March 2006 at 12:15
(strict deadline!)

Please return your answer to the exercise before the deadline by e-mail to
Heikki.Tauriainen@tkk.fi (include the course code T-79.4301 in the sub-
ject). Include in your answer: your name, student id, e-mail address, short
answers to the exercise questions (plain ASCII text, PDF, or PostScript
accepted). Return also the requested Promela models as additional e-mail
attachments, clearly indicating at the beginning of each file (using Promela
comments) the number of the question to which the file gives the answer.
(We also accept “.tar”, “.tar.gz”, “.tar.bz2”, or “.zip” archives if that is more
convenient for you.)
The home exercises are personal, no group work allowed! There are three
rounds of home exercises of 10 points each. To pass the course, you need to
earn ≥ 15 points (out of a maximum of 30) from the three exercises. A score
of ≥ 24 points raises a passing exam grade (≥ 1) by 1 (no effect to exam
grades 0 or 5).

1. Consider the design of an elevator (lift) control logic for a building with
three floors 1, 2, and 3. We would like to model this logic in Promela
and analyze some safety features of it using the Spin model checker.

Each of the floors has one elevator call button: call_1, call_2, and
call_3. Inside the elevator there are also three buttons for selecting to
which floor the user wants the elevator to take her/him: go_1, go_2,
and go_3.

The elevator doors can be opened by sending a message called open to
the elevator and closed by sending the message close. The elevator
can be made to move one floor up by sending it the message up and
one floor down by sending the message down.

In the initial state of the system the elevator is at floor 1 and its doors
are closed.

You are given a partial Promela model (below; also available for down-
load at the course home page <http://www.tcs.hut.fi/Studies/T-

79.4301/>) where the button pushes at floors are transmitted to the
controller through a channel called floor_buttons, button pushes
in the elevator are transmitted to the controller through a channel
called elevator_buttons and messages to the elevator are sent to a
channel called commands.



a) Add the elevator controller to the Promela model in the con-

troller proctype without modifying the other proctype defi-
nitions. For simplicity, the controller is allowed to complete all
operations caused by a button press before responding to another
button press. (Please include the full Promela model in your an-
swer as a separate e-mail attachment.) (5 p.)

b) Modify the Promela model for the elevator proctype to contain
an assertion which triggers if your model sends the up command
at floor 3 or the down command at floor 1. (Hint: You may need to
add also some internal state information to this proctype. Please
include the full Promela model in your answer as a separate e-mail
attachment.) (1 p.)

c) Verify with Spin that the assertion does not trigger with your
elevator controller. (1 p.) (Please include a Spin run log in your
answer.)

d) Modify the Promela model for the elevator proctype to contain
an assertion which triggers if your model sends the up or down com-
mand while the elevator doors are open. (Please include the full
Promela model in your answer as a separate e-mail attachment)
(1 p.)

e) Verify with Spin that the assertion does not trigger with your
elevator controller. (Please include a Spin run log in your answer.)
(1 p.)

f) Is your controller fair? In other words, is it possible in your model
that a repeated sequence of requests call_i for an elevator at a
floor i is ignored from some time point on without the elevator
ever stopping at floor i? Give a short analysis (a few sentences in
Finnish or English) of your model as your answer. (1 p.)



/* Partial Promela model of an elevator. */

mtype = { call_1, call_2, call_3,

go_1, go_2, go_3,

open, close,

up, down}

chan floor_buttons = [0] of { mtype };

chan elevator_buttons = [0] of { mtype };

chan commands = [0] of { mtype };

active proctype elevator() {

do

:: commands ? open -> printf("Elevator: opened doors.\n");

:: commands ? close -> printf("Elevator: closed doors.\n");

:: commands ? up -> printf("Elevator: moved up one floor.\n");

:: commands ? down -> printf("Elevator: moved down one floor.\n");

od

}

/* Simulates random pushing of call buttons. */

active proctype floor_button_pusher() {

do

:: floor_buttons ! call_1;

:: floor_buttons ! call_2;

:: floor_buttons ! call_3;

od

}

/* Simulates random pushing of elevator buttons. */

active proctype elevator_button_pusher() {

do

:: elevator_buttons ! go_1;

:: elevator_buttons ! go_2;

:: elevator_buttons ! go_3;

od

}

active proctype controller() {

int at = 1;

bool closed = true;

/* Implement your own elevator controller here! */

}


