T-79.4201 Search Problems and Algorithms

Lecture 8: Linear and integer programming
modelling and tools

» Normal and standard forms
» Modelling
» Tools

I.N. & P.O. Autumn 2007 1

T-79.4201 Search Problems and Algorithms

Standard and Canonical Forms

» An LP is in canonical form when
» the object function is minimized,
> all constraints are inequalities of the form Y ; ajx; > b;, and
» all variables are non-negative, i.e., bounded by the constraint
Xj >0.
that is, the LP is in the form

min CiX; S.t

n
zainiji, i:l,...,m
=1

x>0, j=1,...,n

» The standard form is similar but all constraints are of the form
3 1 2% =bi.

I.N. & P.O. Autumn 2007 3

T-79.4201 Search Problems and Algorithms

General Linear Programs

» In a general linear program

n
min zcixi s.t.
i=1

n
Zainj =by, i=1,...,m
=1
i <x <y
inequalities with < or > can occur in addition to equalities (=),
maximization can be used instead of minimization, and some of
the variables can be unrestricted (do not have bounds).

» A general LP can be transformed to an equivalent (w.r.t. the set of
original variables) but simpler form, for instance, to a canonical or
standard form (introduced below).

» Two forms are equivalent (w.r.t. a set of variables) if they have the

same set of optimal solutions (w.r.t. the set of variables) or are
both infeasible or both unbounded.

I.N. & P.O. Autumn 2007 2

T-79.4201 Search Problems and Algorithms

Standard and Canonical Forms

An LP can be converted to standard or canonical form using the
following transformations:

» Maximization of a function is equivalent to minimization of its
opposite: maxf(xy,...,Xn) < min—f(Xq,...,Xn)
» An equality can be transformed to a pair of inequalities
n n
L, aix > by
z ajx =bj & { zln_1 oy f>l b
=i 2j=1 "X = —D

» An inequality can be transfrom to an equality by adding a slack
(surplus) variable

n n
Yi—1ajXj+s =Db;
Z ajx <bj < { 550
=1
n n
™ . ijl QjjXj—S :bi
J_Zla”x,zbl & { $50

I.N. & P.O. Autumn 2007 4

T-79.4201 Search Problems and Algorithms

Transformations—cont'd

> An unrestricted variable x; can be eliminated using a pair of
non-negative variables X", X by replacing x; everywhere with
+

X

» Non-positivity constraints can be expressed as non-negativity
constraints: to express x; < 0, replace x; everywhere with —y;
and impose y; > 0.

—x~ and imposing x;~ > 0,x” > 0.

» These transformations are sometimes needed when modelling if
the tool used does not support a feature exploited in the LP
model, for example, non-positive or unrestricted variables.

I.N. & P.O. Autumn 2007 5

T-79.4201 Search Problems and Algorithms

Example—contd

» Second: min —x;" +x, —yi Sit.
eliminate non-positivity constraints —3y; — x2Jr +X, —s1=0
and transform inequalities to equali- —y; +szr —X, +52 =6
ties with slack and surplus variables —y; —s3 = —2
to obtain: y1 >0

x5 >0,x, >0
S1 20752 2 0733 ZO

I.N. & P.O. Autumn 2007 7

T-79.4201 Search Problems and Algorithms

Example.
» Consider the problem of transforming max Xz — X1 S.t.
the LP on the left to standard form. 33Xy —X%X2 >0
We illustrate the transformation in two X1+X2 <6
steps. —2<x1 <0
> First: min — (%, —x;) +x; Sit.
turn maximization to minimization, 3Xq — (x;r —Xx,)>0

turn the unrestricted variable x, toa X1 + (X; — x{) <6
pair of non-negative variables and Xy > —2

treat bounds as constraints X1 <0

to obtain: x5 >0,x, >0

I.N. & P.O. Autumn 2007 6

Modelling

The diet problem: (a typical problem suitable for linear programming)

» Given
a; j: amount of the ith nutrient in a unit of the jth food item
ri: yearly requirement of the ith nutrient
cj: cost per unit of the jth food item

» Build a yearly diet (decide yearly consumption of n food items)
such that it satisfies the minimal nutritional requirements for m
nutriets and is as inexpensive as possible.

» LP solution: take variables x; to represent yearly consumption of
the jth food item

min C1Xy + -+ +CnXp S.t.
ag1Xy+---+ainXn =1

am,1X1 + -+ amnXn = 'm
X1 >0,...,x,, =0

I.N. & P.O. Autumn 2007 8

T-79.4201 Search Problems and Algorithms T-79.4201 Search Problems and Algorithms

Warehouse Location Problem

(A more complicated 0-1 IP problem)

Knapsack

(a typical problem suitable for (0-1) integer programming)
» There is a set of n customers who need to be assigned to one of

» Given: a knapsack of a fixed volume v and n objects, each with a the m potential warehouse locations

volume a; and a value b;. . .
' ' » Customers can only be assigned to an open warehouse, with

» Find a collection of these objects with maximal total value that fits there being a cost of ¢; for opening warehouse j.

in the knapsack. .
» Once open, a warehouse can serve as many customers as it

> P solution: for each item i take a binary variable x; to model chooses (with different costs d; for each customer-warehouse

whether item i is included (x; = 1) or not (x; = 0)

pair).
maxbix; + - - - + by, S.t. > Choose a set of warehouse locations that minimizes the overall
aiXq + -+ anxy <V costs of serving all the n customers.
0<x<1,...,0<x, <1 » |P solution: introduce binary variables
x; is integer for all j € {1,...,n} Xj representing the decision to open warehouse |

yi j representing the decision to assign customer i to warehouse j

I.N. & P.O. Autumn 2007 e I.N. & P.O. Autumn 2007 10

T-79.4201 Search Problems and Algorithms T-79.4201 Search Problems and Algorithms

Warehouse Location Problem—cont'd Expressing Constraints in MIP
» Objective function to minimize: » Some constraints cannot be represented straightforwardly using
m n m linear constraints.
Z CjXj + Z z dijVij » A frequently occuring situation involves combining constraints
=1 i=1j=1 “disjunctively”.
» Customers are assigned to exactly one warehouse: » An implication is a typical example which can sometimes be
m encoded by introducing an additional variable and a new large
Z yij=1 foralli=1,....,n constant.
=1 » Example. Consider a binary variable x and the constraint “if
» Customers can be assigned only to an open warehouse. x = 1then zjnzl Xj = b;” where each x; is non-negative.
Two approaches: Using a large constant M this can be expressed as follows:
» If a warehouse is open, it can serve all n customers: n
n ZXiji—M(l—X)
yij <nx forallj=1,...,m j=1

i=1

Notice that here if x = 1, then Zjnzl Xj = bj must hold but if x =0,
then Zjnzl Xj = by —M imposes no constraint on variables
yij <x forallj=1,....mandi=1,...,n X1,...,Xy if we choose some M > b;.

» If a customer i is assigned to warehouse j, it must be open:

I.N. & P.O. Autumn 2007 11 I.N. & P.O. Autumn 2007 12

T-79.4201 Search Problems and Algorithms

Expressing Constraints—cont'd

» Example. Consider a disjunctive constraint “x > 5ory < 6”
where x and y are non-negative and y < 1000.
This constraint can be encoded by introducing a new binary
variable b and constant M as follows

X+Mb >5
y—M(1-b)<6

Here if we choose M > 994, then
» if b =0, we have constraints x > 5 and y —M < 6 where the latter
is satisfied by every value of y (0 <y < 1000) and
» if b =1, we have constraints x + M > 5 and y < 6 where the
former is satisfied by every value of x > 0.
» Unfortunately, these techniques for expressing disjunctions are
are not general and, e.g., choosing a value for the constant M is
often non-trivial.

I.N. & P.O. Autumn 2007 13

T-79.4201 Search Problems and Algorithms

Example: Resource Constraints—cont'd

» Disjunctive constraints on binary variables can be expressed
straightforwardly.

> For example, to enforce that the values of variables x;; are
assigned consistently according to their intuitive meaning
following constraints need to be added.

» “Either i occurs before j or the reverse but not both”
This is an exclusive-or constraint which can be encoded directly:

Xj+xi =1 (i #j)

» “If i occurs before j and j before k, then i occurs before k.
This can be seen as a disjunction —x;; V —Xjk V Xk of binary
variables Xij, Xk , Xik:

(1 —xi) + (1 —xj) +xik > 1 (or equivalently x;j + Xjx — Xik < 1)

A potential problem: O(n®) constraints are needed where n is the
number of jobs.

I.N. & P.O. Autumn 2007 15

T-79.4201 Search Problems and Algorithms

Example: Resource Constraints

» In a scheduling application typically following types of variables
are used:
sj. starting time for job j
Xij: binary variable representing whether job i occurs before job j
» Consider now a typical constraint:
“If job 1 occurs before job 2, then job 2 starts at least 10 time
units after the end of job 1”
» This is an implication that can be represented by introducing a
suitably large constant M (d; is the duration of job 1):

32281+d1+10—M(1—X12)

> If x32 = 1: we get s, > s; +d; + 10 as required.
> If x50 = 0: we get s, > s; +d; +10 — M, which implies no
restriction on s, if M is sufficiently large.

I.N. & P.O. Autumn 2007 14

T-79.4201 Search Problems and Algorithms

Routing Constraints

(An example of a problem where finding a compact MIP encoding is
challenging).

» Consider the Hamiltonian cycle problem:
INSTANCE: A graph (V,E).
QUESTION: Is there a simple cycle visiting all nodes of the
graph?
> Introduce a binary variable x; ; for each edge (i,j) € E indicating
whether the edge is included in the cycle (x; j = 1) or not (x; j = 0).
» Constraints:
» The cycle leaves each node i through exactly one edge:

for each node i: ; Xij=1
(i,j)€E

» The cycle enters each node i through exactly one edge:

for each node i: ; X, =1
(i.i)€E

I.N. & P.O. Autumn 2007 16

T-79.4201 Search Problems and Algorithms

Hamiltonian Cycle

>
>

However, the constraints above are not sufficient.
Consider, for example, a graph with 6 nodes such that variables
X1,2,X2.3,X3,1,X4.5,X5.6,Xp 4 are setto 1 and all others to 0.
This solution satisfies the constraints but does not represent a
Hamiltonian cycle (two separate cycles).
Enforcing a single cycle is non-trivial.
A solution for small graphs is to require that the cycle leaves
every proper subset of the nodes, that is, to have a constraint
Xij >1

(ij)EE i€s,j¢s
for every proper subset s of the nodes V.
In the example above, this constraint would be violated for
s ={1,2,3}.
A potential problem for bigger graphs: O(2") constraints needed
where n is the number of nodes.

I.N. & P.O. Autumn 2007 17

T-79.4201 Search Problems and Algorithms

Hamiltonian Cycle—cont'd

>

|

For condition ‘if p; = n, then p; > 2" we can use the technique for
implications:
pj=2—(n—pi)
Notice that
» if n = p;, then we get p; > 2 and

» if n > pj, then the constraint is satisfied for all value of p;
(1 <pj<n).

To complete the encoding in IP we need to express disequality

#)

I.N. & P.O. Autumn 2007 19

T-79.4201 Search Problems and Algorithms

Hamiltonian Cycle—contd

>

Another approach, where the number of constraints remains
polynomial, is to introduce an integer variable p; for each node

i =1,...,nin the graph to represent the position of the node i in
the cycle, that is, pji = k means that node i is kth node visited in
the cycle.

In order to enforce a single cycle we need to enforce the following
conditions.

Each p; has avalue in {1,...,n}:

1<pi<n

This value is unique, that is, for all pairs of nodes i and j with
i #, pj # pi holds.
For all pairs of nodes i and j with i # j such that (i,j) & E, node |
cannot be the next node after i, that is,
> pj # pi +1 holds and
> if pj =n, then p; > 2.

I.N. & P.O. Autumn 2007 18

T-79.4201 Search Problems and Algorithms

Expressing Disequality

>

For expressing an arbitrary disequality x # y of two bounded
integer variables x and y we reformulate the disequality as “x >y
ory > x"orequivalently “x —y >lorx —y < —1"

Now we can model the disjunction using a binary variable b and a
large constant M and the constraints

X—y+Mb>1
X—y—M(1-b)< -1

Notice that

» ifb=0,thenwegetx —y >1,x—y <M—1and

» ifb=1,thenwegetx —y+M>1.x—-y < -1
where the constraints involving M are satisfied by all values of
X,y given large enough M w.r.t. to the bounds on the values of

X,Y.

I.N. & P.O. Autumn 2007 20

T-79.4201 Search Problems and Algorithms

MIP Tools

» There are several efficient commercial MIP solvers.

» Also public domain systems exists but these are not as efficient
as the commercial ones.

» See, for example,
http: //ww uni x. nts. anl . gov/ ot ¢/ Gui de/ f ag/
| i near - programi ng- fag. ht m
for MIP systems and other information and frequently asked
guestions.

I.N. & P.O. Autumn 2007 21

T-79.4201 Search Problems and Algorithms

» In the third home assignment a public domain MIP solver,
| p_sol ve is employed.

» See the newest version (5.5) at
http://1psol ve. sourceforge. net/5. 5/

» | p_sol ve accepts a number of input formats
Example. | p_sol ve native format
mn: x1 + x2 + 3x3;

x1l - x2 <= 1;
2X2 - 2.5x3 >=1;
-7x3 + x2 = 3;

> | p_sol ve < exanple
Val ue of objective function: 3

Actual values of the variables:

x1 0
X2 3
x3 0

I.N. & P.O. Autumn 2007 23

T-79.4201 Search Problems and Algorithms

MIP Solvers

» A MIP solver can typically take its input via an input file and an
API.

» There a number of widely used input formats (like mps) and tool
specific formats (I p_sol ve, CPLEX, LINDO, GNU MathProg,
LPFML XML, ...)

» MIP solvers do not require the input program to be in a standard
form but typically quite general MIPs are allowed, that is

» both minimization and maximization are supported and
» operators “=", “<”, and “>" can all be used.

I.N. & P.O. Autumn 2007 22

http://www-unix.mcs.anl.gov/otc/Guide/faq/
linear-programming-faq.html
http://lpsolve.sourceforge.net/5.5/

