
T–79.4201 Search Problems and Algorithms

Lecture 7: Constraint satisfaction
Linear and integer programming

◮ Constraint satisfaction
◮ Global constraints
◮ Local search
◮ Tools for SAT and CSP

◮ Linear and integer programming
◮ Introduction

I.N. & P.O. Autumn 2007 1

T–79.4201 Search Problems and Algorithms

Global Constraints

◮ Constraint programming systems often offer constraints with
special purpose constraint propagation (filtering) algorithms.
Such a constraint can typically be seen as an encapsulation of a
set of simpler constraints and is called a global constraint.

◮ A representative example is the alldiff constraint:

alldiff(x1, . . . ,xn) = {(d1, . . . ,dn) | di 6= dj , for i 6= j}

Example. A value assignment {x1 7→ a,x2 7→ b,x3 7→ c} satisfies
alldiff(x1,x2,x3) but {x1 7→ a,x2 7→ b,x3 7→ a} does not.

◮ alldiff(x1, . . . ,xn) can be seen as an encapsulation of a set of
binary constraints xi 6= xj , 1≤ i < j ≤ n.

I.N. & P.O. Autumn 2007 2

T–79.4201 Search Problems and Algorithms

Global Constraints: alldiff

◮ Global constraints enable compact encodings of problems.

◮ Example. N Queens
Problem: Place n queens on a n×n chess board so that they do
not attack each other.

◮ Variables: x1, . . . ,xn (xi gives the position of the queen on ith
column)

◮ Domains: [1..n]
◮ Constraints: for i ∈ [1..n−1] and j ∈ [i +1..n]:

(i) alldiff(x1, . . . ,xn) (rows)
(ii) xi − xj 6= i− j (SW-NE diagonals)
(iii) xi − xj 6= j− i (NW-SE diagonals)

I.N. & P.O. Autumn 2007 3

T–79.4201 Search Problems and Algorithms

Global Constraints: Propagation

◮ In addition to compactness global constraints often provide more
powerful propagation than the same condition expressed as the
set of corresponding simpler constraints.

◮ Consider the case of alldiff:
For alldiff(x1, . . . ,xn) there is an efficient hyper-arc consistency
algorithm which allows more powerful propagation than hyper-arc
consistency for the set of corresponding “6=” constraints.

◮ Example.
◮ Consider variables x1,x2,x3 with domains

D1 = {a,b,c},D2 = {a,b},D3 = {a,b}.
◮ Now alldiff(x1,x2,x3) is not hyper-arc consistent and the

projection rule removes values a,b from the domain of x1.
◮ However, the corresponding set of constraints

x1 6= x2,x1 6= x3,x2 6= x3 is hyper-arc consistent and the projection
rule is not able to remove any values.

I.N. & P.O. Autumn 2007 4



T–79.4201 Search Problems and Algorithms

Global Constraints: Other Examples
◮ When solving a CSP problem often a special purpose (global)

constraint and an efficient propagation algorithm for it needs to be
developed to make the solution technique more efficient.

◮ There is a wide range of such global constraints
(see for example Global Constraint Catalog
http://www.emn.fr/x-info/sdemasse/gccat/):

◮ cumulative
◮ diff-n
◮ cycle
◮ sort
◮ alldifferent and permutation
◮ symmetric alldifferent
◮ global cardinality (with cost)
◮ sequence
◮ minimum global distance
◮ k-diff
◮ number of distinct values

. . .

I.N. & P.O. Autumn 2007 5

T–79.4201 Search Problems and Algorithms

CSP: Local Search

◮ GSAT and WalkSAT type of local search algorithms (see
Lecture 4) can be generalized to CSPs.

◮ As an example we consider Min Conflict Heuristic (MCH)
algorithm (Minton et al, 1990):
Given a CSP instance P

◮ Initialize each variable by selecting a value uniformly at random
from its domain.

◮ In each local step select a variable xi uniformly at random from the
conflict set, which is the set of variables appearing in a constraint
that is unsatisfied under the current assignment.

◮ A new value v for xi is selected from the domain of xi such that by
assigning v to xi the number of conflicting constraints is
minimized.

◮ If there is more than one value with that property, one of the
minimizing values is chosen uniformly at random.

I.N. & P.O. Autumn 2007 6

T–79.4201 Search Problems and Algorithms

Example.
Consider a run of MCH on a CSP
〈{x1 ≤ x2,x2 ≤ x3,x3 ≤ x1},x1 ∈ {1,2,3},x2 ∈ {1,2,3},x3 ∈ {1,2,3}〉

◮ First a value is selected for each variable uniformly at random
from its domain, say {x1 7→ 1,x2 7→ 2,x3 7→ 3}.

◮ For this assignment, the conflict set is {x1,x3} from which, say, x1

is randomly selected.

◮ Each possible assignment x1 7→ 1/x1 7→ 2/x1 7→ 3 leaves one
conflict and, hence, one of them is randomly selected, say
x1 7→ 2.

◮ For the resulting assignment {x1 7→ 2,x2 7→ 2,x3 7→ 3}, the
conflict set is {x1,x3}, from which x3 is randomly selected.

◮ Now assignments x3 7→ 1/x3 7→ 3 leave one conflict but x2 7→ 2
leaves none.

◮ Hence, x2 7→ 2 is selected leading to a solution
{x1 7→ 2,x2 7→ 2,x3 7→ 2}.

I.N. & P.O. Autumn 2007 7

T–79.4201 Search Problems and Algorithms

MCH—cont’d

◮ One can add to MCH a random walk step like in NoisyGSAT
(WMCH algorithm; Wallace and Freuder, 1995).

◮ MCH can also be extended with a tabu search mechanism
(Steinmann et al. 1997):

◮ After each search step where the value of a variable xi has
changed from v to v ′, the assignment xi 7→ v is declared tabu for
the next tt steps.

◮ While xi 7→ v is tabu, value v is excluded from the selection of
values for xi except if assigning v to xi leads to an improvement in
the evaluation function over the current assignment.

I.N. & P.O. Autumn 2007 8

http://www.emn.fr/x-info/sdemasse/gccat/


T–79.4201 Search Problems and Algorithms

CSP: Tabu Search
◮ A tabu search algorithm by Galiner and Hao is one of the best

performing general local search algorithms for CSPs.
◮ TS-GH algorithm (Galiner and Hao, 1997):

◮ Initialize each variable by selecting a value uniformly at random
from its domain.

◮ In each local step: among all variable-value assignments x 7→ v
such that x appears in a constraint that is unsatisfied under the
current assignment and v is in the domain of x , select an
assignment x 7→ v that leads to the maximal decrease in the
number of violated constraints.

◮ If there are multiple such assignments, one of them is chosen
uniformly at random.

◮ After changing the assignment of x from v to v ′, the assignment
x 7→ v is declared tabu for tt steps (except when leading to an
improvement).

◮ For competitive performance, the evaluation function for
variable-value assignments needs to be implemented using
caching and incremental updating techniques.

I.N. & P.O. Autumn 2007 9

T–79.4201 Search Problems and Algorithms

Example.
Consider a local step of TS-GH on a CSP
〈{x1 ≤ x2,x2 ≤ x3,x3 ≤ x1},x1 ∈ {1,2,3},x2 ∈ {1,2,3},x3 ∈ {1,2,3}〉

where the current assignment is {x1 7→ 2,x2 7→ 2,x3 7→ 3}

◮ Variables x1,x3 appear in an unsatisfiable constraint (x3 ≤ x1).

◮ In MCH one of these would be randomly selected but in TS-GH
we consider all assignments

x1 7→ 1/x1 7→ 2/x1 7→ 3/x3 7→ 1/x3 7→ 2/x3 7→ 3

and select an assignment leading to the maximal decrease in the
number of violated constraints.

◮ Assignment x3 7→ 2 leaves no violated constraints but other
assignments leave a violated constraint.

◮ Hence, x3 7→ 2 is selected leading to a solution
{x1 7→ 2,x2 7→ 2,x3 7→ 2}.

I.N. & P.O. Autumn 2007 10

T–79.4201 Search Problems and Algorithms

SAT: Local Search

◮ Local search methods have difficulties with structured problem
instances.

◮ For good performance parameter tuning is essential.
(For example in WalkSAT: the noise parameter p and the
max_flips parameter.)

◮ Finding good parameter values is a non-trivial problem which
typically requires substantial experimentation and experience.

◮ WalkSAT revised: adding greediness and adaptivity
=⇒ Novelty+ and AdaptiveNovelty+ algorithms

I.N. & P.O. Autumn 2007 11

T–79.4201 Search Problems and Algorithms

function WalkSAT(F ,p):
for max_tries times do

t ← initial truth assignment;
while flips < max_flips do

if t satisfies F then return t else
choose a random unsatisfied clause C in F ;
if some variables in C can be flipped without

breaking any presently satisfied clauses,
then pick one such variable x at random; else:

with probability p, pick a variable x in C uniformly at random;
with probability (1−p), do basic GSAT move:

find a variable x in C whose flipping causes
largest decrease in the number of unsatisfied clauses ;

t ← (t with variable x flipped)
end while ;

end for
return “No satisfying truth assignment found”

I.N. & P.O. Autumn 2007 12



T–79.4201 Search Problems and Algorithms

Novelty+
◮ WalkSAT can be made greedier using a history-based variable

selection mechanism.
◮ The age of a variable is the number of local search steps since

the variable was last flipped.
◮ Novelty algorithm (McAllester et al., 1997):

After choosing an unsatisfiable clause the variable to be flipped is
selected as follows:

◮ If the variable with the highest score does not have minimal age
among the variables within the same clause, it is always selected.

◮ Else it is only selected with probability 1−p, where p is a
parameter called noise setting.

◮ Otherwise the variable with the next lower score is selected.
◮ When sorting variables according to their scores, ties are broken

according to decreasing age.
◮ In Novelty+ (Hoos 1998) a random walk step (with probability wp)

is added: with probability 1−wp the variable to be flipped is
selected according to the Novelty mechanism and in the other
cases a random walk step is performed.

I.N. & P.O. Autumn 2007 13

T–79.4201 Search Problems and Algorithms

Adaptive WalkSat and Adaptive Novelty+

◮ A suitable value for the noise parameter p is crucial for
competitive performance of WalkSAT and its variants.

◮ Too low noise settings lead to stagnation behaviour and too high
settings to long running times.

◮ Instead of a static setting, a dynamically changing noise setting
can be used in the following way:

◮ Two parameters θ and φ are given.
◮ At the beginning the search is maximally greedy (p = 0).
◮ There is a search stagnation if no improvement in the evaluation

function value has been observed over the last mθ search steps
where m is the number of clauses in the instance.

◮ In this situation the noise value is increased by p := p +(1−p)φ.
◮ If there is an improvement in the evaluation function value, then

the noise value is decreased by p := p−pφ/2.

I.N. & P.O. Autumn 2007 14

T–79.4201 Search Problems and Algorithms

Adaptive WalkSat and Adaptive Novelty+

◮ Notice the asymmetry between increases and decreases in the
noise setting.

◮ Between increases in noise level there is always a phase during
which the search progress is monitored without further increasing
the noise. No such delay is enforced between successive
decreases in noise level.

◮ When this mechanism of adapting the noise level is applied to
WalkSat and Novelty+, we obtain Adaptive WalkSat and Adaptive
Novelty+ (Hoos, 2002).

◮ The performance of the adaptive versions is more robust w.r.t. the
settings of θ and φ than the performance of the non-adaptive
versions w.r.t. to the settings of p.

◮ For example, for Adaptive Novelty+ setting θ = 1/6 and φ = 0.2
seem to lead to robust overall performance (while there appears
to be no such setting for p in the non-adaptive case).

I.N. & P.O. Autumn 2007 15

T–79.4201 Search Problems and Algorithms

Tools for SAT

◮ The development of SAT solvers is strongly driven by SAT
competitions (http://www.satcompetition.org/)

◮ There is a wide range of efficient solvers also available in public
domain.

◮ See for example http://www.satcompetition.org/ for
solvers that ranked well in previous SAT competitions.
SAT 2005:

SatELiteGTI, MiniSAT 1.13, zChaff_rand, HaifaSAT,
Vallst, March_dl, kcnf-2004, Dew_Satz1a, Jerusat 1.31 B,

SAT-Race 2006:

minisat 2.0, Eureka 2006, Rsat, Cadence MiniSat v1.14,
...

SAT 2007:

minisat, SATzilla, MiraXT, Rsat, picosat, March KS,
adaptg2wsat+, adaptg2wsat0, MXT, KCNFS 2004, ...

I.N. & P.O. Autumn 2007 16

http://www.satcompetition.org/
http://www.satcompetition.org/


T–79.4201 Search Problems and Algorithms

Tools for CSP

◮ Constraint programming systems offer a rich set of supported
constraint types with efficient propagation algorithms and
primitives for implementing search.

◮ Typically the user needs to program, for example, the search
algorithm, splitting technique, and heuristic.

◮ See, for example,
http://4c.ucc.ie/web/archive/solver.jsp for available
constraint solvers:

CLAIRE, ECLiPse, GNU Prolog, Oz,
Sicstus Prolog, ILOG Solver, ...

I.N. & P.O. Autumn 2007 17

T–79.4201 Search Problems and Algorithms

Linear and Integer Programming

◮ Linear and Integer Programming can be thought to be a subclass
of constraint programming where there are

◮ two types of variables: real valued and integer valued
◮ only one type of constraint: linear (in)equalities.

◮ Linear Programming (LP): only real valued variables.

◮ Integer Programming (IP): only integer variables.

◮ Mixed Integer Programming (MIP): both integer and real valued
variables.

I.N. & P.O. Autumn 2007 18

T–79.4201 Search Problems and Algorithms

Linear and Integer Programming

◮ Computationally there is a fundamental difference between LP
and IP:
LP problems can be solved efficiently (in polynomial time) but
IP problems are NP-complete (and all known algorithms have an
exponential worst-case running time).

◮ MIP offers an attractive framework for solving (search and)
optimization problems:

◮ Continuous variables can be handled efficiently along with
discrete variables.

◮ Powerful LP solution techniques can be exploited in the IP case
through linear relaxation.

◮ Bounds on deviation from optimality can be generated even when
optimal solutions are not proven.

I.N. & P.O. Autumn 2007 19

T–79.4201 Search Problems and Algorithms

MIP: Basic Concepts

◮ In a mixed integer program (MIP) variables are partitioned in two
sets such that in the other set (call this I) each variable is required
to take an integer value while the remaining variables can take
any real value.

◮ Each variable xi can have a range li ≤ xi ≤ ui .

◮ A linear constraint is an expression of the form

a1x1 + · · ·+anxn = b

where the relation symbol ’=’ can also be ’≤’ or ’≥’ and ai and b
are given constants.

◮ A linear function is an expression of the form c1x1 + · · ·+ cnxn

◮ A MIP consists of (i) the objective of minimizing (or maximizing) a
linear function, (ii) a set of linear constraints, (iii) ranges for
variables and (iv) a set of integer valued variables.

I.N. & P.O. Autumn 2007 20

http://4c.ucc.ie/web/archive/solver.jsp


T–79.4201 Search Problems and Algorithms

An Example MIP
minx2− x1 s.t.

3x1 − x2 ≥ 0
x1 + x2 ≥ 6
−x1 + 2x2 ≥ 0
2≤ x1 ≤ 10
x2 is integer

I.N. & P.O. Autumn 2007 21

T–79.4201 Search Problems and Algorithms

MIP: Basic Concepts

◮ We can write a MIP in the matrix form as follows.
◮ Let x be a vector of variables x = (x1, . . . ,xn).
◮ Variable ranges can be represented by vectors l = (l1, . . . , ln) and

u = (u1, . . . ,un) such that for all i , li ≤ xi ≤ ui , that is, l ≤ x ≤ u.
◮ A set of linear constraints Σjajxj = bj can be written in matrix

form as Ax = b such that A = (aij) is a matrix where aij is the
coefficient for variable j in the i th constraint and b = (b1, . . . ,bn).

◮ A linear objective function Σjcjxj is written as cx where
c = (c1, . . . ,cn) is a vector of coefficients.

◮ Then a MIP can be written as:

mincx

s.t. Ax = b

l ≤ x ≤ u

xj is integer for all j ∈ I

I.N. & P.O. Autumn 2007 22

T–79.4201 Search Problems and Algorithms

MIP: Basic Concepts

◮ A feasible solution to a MIP is an assignment of values to the
variables in the problem such that the assignment satisfies all the
linear constraints and range constraints and for each variable in I
it assigns an integer value.

◮ A program is feasible if it has a feasible solution otherwise it is
said to be infeasible.

◮ An optimal solution is a feasible solution that gives the minimal
(maximal) value of the objective function among all feasible
solutions.

◮ A program is unbounded (from below) if for all λ ∈ R there is a
feasible solution for which the value of the objective function is at
most λ.

I.N. & P.O. Autumn 2007 23

T–79.4201 Search Problems and Algorithms

An Example

Consider the MIP
min2x1 + x2 s.t.

3x1 − x2 ≥ 0
x1 + x2 ≥ 6
−x1 + 2x2 ≥ 0
2≤ x1

x2 is integer

◮ x1 = 4.5, x2 = 3 is a feasible solution
◮ x1 = 2, x2 = 4 is an optimal solution which gives the minimal

value (8) for the objective function.
◮ If the objective is minx1− x2, then the problem is unbounded

(from below).
◮ If we change the range for x1 to be x1 ≤ 1, the problem becomes

infeasible.

I.N. & P.O. Autumn 2007 24



T–79.4201 Search Problems and Algorithms

Modelling: SET COVER
INSTANCE: A family of sets F = {S1, . . . ,Sn} of subsets of a finite set
U.
QUESTION: Find an l-cover of U (a set of l sets from F whose union
is U) with the smallest number l of sets.

◮ For each set Si an integer variable xi such that 0≤ xi ≤ 1

◮ For each element u of U a constraint

a1x1 + · · ·+anxn ≥ 1

where the coefficient ai = 1 if u ∈ Si and otherwise ai = 0.

◮ Objective: minx1 + · · ·+ xn

I.N. & P.O. Autumn 2007 25

T–79.4201 Search Problems and Algorithms

Modelling: Logical Constraints

◮ Consider binary integer variables (0≤ xi ≤ 1).

◮ Disjunction: x3 has the value of the boolean expression x1∨ x2:

x3 ≥ x1

x3 ≥ x2

x3 ≤ x1 + x2

◮ Conjunction: x3 has the value of the boolean expression x1∧ x2:

x3 ≤ x1

x3 ≤ x2

x3 ≥ x1 + x2−1

I.N. & P.O. Autumn 2007 26

T–79.4201 Search Problems and Algorithms

Modelling SAT
Given a SAT instance F in CNF, introduce

◮ for each Boolean variable x in F , a binary integer variable x
(0≤ x ≤ 1).

◮ for each clause li ∨·· ·∨ ln in F , a constraint

a1x1 + · · ·+anxn ≥ 1−m

where the coefficient ai = 1 if the literal li is positive and otherwise
ai =−1 and m is the number of negative literals in the clause.

◮ Then F is satisfiable iff the corresponding set of constraints has a
feasible solution.

I.N. & P.O. Autumn 2007 27


