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Lecture 6: Constraint satisfaction: algorithms

◮ Basic algorithmic framework for solving CSPs

◮ DPLL algorithm for Boolean constraints in CNF
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Constraint satisfaction: algorithms

◮ For some classes of constraints there are efficient special
purpose algorithms (domain specific methods/constraint solvers).

◮ But now we consider general methods consisting of
◮ constraint propagation techniques and
◮ search methods.

◮ We discuss the basic structure of such a general method
(procedure Solve below), the components used, and their
interaction.

◮ The DPLL algorithm for solving Boolean constraint satisfaction
problems given in CNF is presented as an example of such a
general method.
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Constraint Programming: Basic Framework

procedure Solve:
var continue: Boolean;
continue:= TRUE;
while continue and not Happy do

Preprocess;
Constraint Propagation;
if not Happy then

if Atomic then
continue:= FALSE

else
Split;
Proceed by Cases

end
end

end

I.N. & P.O. Autumn 2007 3

T–79.4201 Search Problems and Algorithms

Solve

◮ The procedure Solve takes as input a constraint satisfaction
problem (CSP) and transforms it until it is solved.

◮ It employs a number of subprocedures (Happy, Preprocess,
Constraint Propagation, Atomic, Split, Proceed by Cases).

◮ The subprocedures Happy and Atomic test the given CSP to
check the termination condition for Solve.

◮ The subprocedures Preprocess and Constraint Propagation
transforms the given CSP to another one that is equivalent to it.

◮ Split divides the given CSP into two or more CSPs whose union
is equivalent to the CSP.

◮ Proceed by Cases specifies what search techniques are used to
process the CSPs generated by Split.

◮ The subprocedures will be explained in more detail below.
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Equivalence of CSPs
◮ To understand Solve we need the notion of equivalence.
◮ Basically, CSPs P1 and P2 are equivalent if they have the same

set of solutions.
◮ However, transformations can add new variables to a CSP and

then equivalence is understood w.r.t. the original variables.
◮ We say that two value assignments T and T ′ agree on a set of

variables X if T (x) = T ′(x) for all x ∈ X .
◮ CSPs P1 and P2 are equivalent w.r.t. a set of variables X iff

◮ for every solution T1 of P1 there is a solution T2 of P2 such that T1

and T2 agree on variables X and
◮ for every solution T2 of P2 there is a solution T1 of P1 such that T2

and T1 agree on variables X .
◮ Union of CSPs P1, . . . ,Pm is equivalent w.r.t. X to a CSP P0 iff

◮ for every solution T0 of P0 there is a solution Ti of Pi for some
1 ≤ i ≤ m such that T0 and Ti agree on variables X and

◮ for each 1 ≤ i ≤ m for every solution Ti of Pi there is a solution T0

of P0 such that Ti and T0 agree on variables X .
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Example.

◮ Consider the following CSPs:
P1 = 〈{x1 < x2};x1 ∈ {1,3},x2 ∈ {1,3}〉
P2 = 〈{x1 < x3,x3 ≤ x2};x1 ∈ {1,3},x2 ∈ {1,3},x3 ∈ {1,2,3}〉

◮ P1 and P2 are not equivalent (because they have different sets for
variables).

◮ However, they are equivalent on variables X = {x1,x2} as
◮ for the unique solution T1 = {x1 7→ 1,x2 7→ 3} of P1 there is a

corresponding solution T21 = {x1 7→ 1,x2 7→ 3,x3 7→ 3} of P2

such that T1 and T21 agree on variables X and
◮ for the solutions T21 and T22 = {x1 7→ 1,x2 7→ 3,x3 7→ 2} of P2 T1

is a corresponding solution of P1 agree on X .

◮ For instance, CSP
P0 = 〈{x1 < x2;x1 ∈ {1, . . . ,10},x2 ∈ {1, . . . ,10}〉
is equivalent w.r.t. {x1,x2} to the union of
P01 = 〈{x1 < x2};x1 ∈ {1, . . . ,5},x2 ∈ {1, . . . ,10}〉
P02 = 〈{x1 < x2};x1 ∈ {6, . . . ,10},x2 ∈ {1, . . . ,10}〉
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Solved and Failed CSPs

◮ For termination we need to defined when a CSP has been solved
and when it is failed, i.e., has no solution.

◮ Let C be a constraint on variables y1, . . . ,yk with domains
D1, . . . ,Dk (C ⊆ D1 ×·· ·×Dk ).

◮ C is solved if C = D1 ×·· ·×Dk and C 6= /0.

◮ A CSP is solved if
— all its constraints are solved
— no domain of it is empty.

◮ A CSP is failed if
— it contains the false constraint ⊥, or
— one of its domains or constraints is empty.
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Transformations

◮ In the following we represent transformations of CSPs by means
of proof rules.

◮ A rule
P0

P1

transforms the CSP P0 to the CSP P1.

◮ A rule
P0

P1 | · · · | P1

transforms the CSP P0 to the set of CSPs P1, . . . ,Pn.
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Happy
This is a test applied to the current CSP to see whether the goal
conditions set for the original CSP have been achieved. Typical
conditions include:

◮ a solution has been found,

◮ all solutions have been found,

◮ a solved form has been reached from which one can generate all
solutions,

◮ it is determined that no solution exists (the CSP is failed),

◮ an optimal solution w.r.t. some objective function has been found,

◮ all optimal solutions have been found.

Example. For a CSP

〈x1 + x2 = x3,x1 − x2 = 0;xi ∈ Di〉

the solved form could be, for example,

〈x1 = x2,x3 = 2x2;xi ∈ Di〉
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Preprocess
◮ Bring constraints to desired syntactic form.
◮ Example: Constraints on reals.

Desired syntactic form: no repeated occurrences of a variable.

ax7 +bx5y + cy10 = 0
ax7 + z + cy10 = 0,bx5y = z

(Notice a new variable is introduced.)

Atomic
◮ This is a test applied to the current CSP to see whether the CSP

is amenable for splitting.
◮ Typically a CSP is considered atomic if the domains of the

variables are either singletons or empty.
◮ But a CSP can be viewed atomic also if it is clear that search

‘under’ this CSP is not needed.
For example, this could be the case when the CSP is “solved” or
an optimal solution can be computed directly from the CSP.
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Split

◮ After Constraint Propagation, Split is called when the test Happy
fails but the CSP is not yet Atomic.

◮ A call to Split replaces the current CSP P0 by CSPs P1, . . . ,Pn

such that the union of P1, . . . ,Pn is equivalent to P0, i.e., the rule

P0

P1 | · · · | Pn

is applied

◮ A split can be implemented by splitting domains or constraints.

◮ For efficiency an important issue is the splitting heuristics, i.e.
which split to apply and in which order to consider the resulting
CSPs.
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Split — a domain

◮ D finite (Enumeration) :
x ∈ D

x ∈ {a} | x ∈ D−{a}

◮ D finite (Labeling) :
x ∈ {a1, . . . ,ak}

x ∈ {a1} | . . . | x ∈ {ak}

◮ D interval of reals (Bisection) :
x ∈ [a..b]

x ∈ [a..
a+b

2 ] | x ∈ [a+b
2 ..b]

Split — a constraint
◮ Disjunctive constraints like

Start[task1] + Duration[task1] ≤ Start[task2] ∨
Start[task2] + Duration[task2] ≤ Start[task1]

can be split using the rule:
C1∨C2
C1 | C2

◮ Constraints in "compound" form:
|p(x̄)| = a

p(x̄) = a | p(x̄) = −a
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Heuristics
Which

◮ variable to choose,

◮ value to choose,

◮ constraint to split.

Examples:

(i) Select a variable that appears in the largest number of constraints
(most constrained variable).

(ii) For a domain being an integer interval: select the middle value.

I.N. & P.O. Autumn 2007 13

T–79.4201 Search Problems and Algorithms

Proceed by Cases

◮ Various search techniques (covered in Lectures 3 and 4) can be
applied.

◮ A typical solution is to use
◮ backtracking,
◮ branch and bound

◮ and combine these with
◮ efficient constraint propagation and
◮ intelligent backtracking (e.g., conflict directed backjumping)

◮ As the search trees are typically very big, you tend to avoid
techniques where much more than the current branch of the
search tree needs to be stored.
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Constraint Propagation

◮ Intuition: Replace a CSP by an equivalent one that is "simpler".

◮ Reduction rules can reduces domains of variables and/or
constraints.

◮ By constraint propagation we mean applying repeatedly reduction
steps.

◮ Efficient constraint propagation enabling substantial reductions is
a key issue for overall performance.
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Reduce Domains

◮ Linear inequalities on integers:
〈x < y ;x ∈ [lx ..hx ],y ∈ [ly ..hy ]〉

〈x < y ;x ∈ [lx ..h′x ],y ∈ [l ′y ..hy ]〉
where h′x = min(hx ,hy −1), l ′y = max(ly , lx +1)

Example:
〈x < y ;x ∈ [50..200],y ∈ [0..100]〉

〈x < y ;x ∈ [50..99],y ∈ [51..100]〉

Reduce Constraints
Usually by introducing new constraints.

◮ Transitivity of <:
〈x < y ,y < z;DE〉

〈x < y ,y < z,x < z;DE〉
This rule introduces new constraint, x < z .
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Repeated Domain Reduction: Example

◮ Consider 〈x < y ,y < z;x ∈ [50..200],y ∈ [0..100],z ∈ [0..100]〉

◮ Apply above rule to x < y :
〈x < y ,y < z;x ∈ [50..99],y ∈ [51..100],z ∈ [0..100]〉.

◮ Apply it now to y < z:
〈x < y ,y < z;x ∈ [50..99],y ∈ [51..99],z ∈ [52..100]〉

◮ Apply it again to x < y :
〈x < y ,y < z;x ∈ [50..98],y ∈ [51..99],z ∈ [52..100]〉
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Constraint Propagation Algorithms

◮ Deal with efficient scheduling of atomic reduction steps

◮ Try to avoid useless applications of atomic reduction steps

◮ Termination when local consistency is achieved.

◮ Depending on the class of constraints different notions of local
consistency are achieved.

◮ The projection rule is a widely applicable and efficient general
reduction rule.

Projection rule :

Take a constraint C on variables x1, . . . ,xk . Choose a
variable xi with domain Di . Remove from Di each value d for
which there is no (d1, . . . ,di , . . . ,dk) ∈ D1 ×·· ·×Dk such
that (d1, . . . ,di , . . . ,dk) ∈ C and di = d.
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Hyper-Arc Consistency
If the projection tule is the only atomic reduction step and it is applied
as long as new reductions can be made, then the constraint
propagation algorithm achieves a local consistency notion called
hyper-arc consistency:

A CSP is hyper-arc consistent if for every constraint C on
variables x1, . . . ,xk and every variable xi with domain Di , for
each value d ∈ Di , there is
(d1, . . . ,di , . . . ,dk) ∈ D1 ×·· ·×Dk such that
(d1, . . . ,di , . . . ,dk) ∈ C and di = d.

Example. Consider a CSP

〈C1(x ,y ,z),C2(x ,z);x ∈ {1,2,3},y ∈ {1,2,3},z ∈ {1,2,3}〉

where C1 = {(1,1,2),(1,2,1),(2,3,3)} and
C2 = {(1,1),(2,2),(3,3)}.

This is not hyper-arc consistent because for the constraint C1(x ,y ,z)
3 belongs to the domain of x but there is no tuple (3,d2,d3) ∈ C1.

I.N. & P.O. Autumn 2007 19

T–79.4201 Search Problems and Algorithms

Example
◮ Consider a CSP

〈C1(x ,y ,z),C2(x ,z);x ∈ {1,2,3},y ∈ {1,2,3},z ∈ {1,2,3}〉
where C1 = {(1,1,2),(1,2,1),(2,3,3)} and
C2 = {(1,1),(2,2),(3,3)}.

◮ Applying Projection rule to C1(x ,y ,z) and all variables x ,y ,z
yields
〈C1(x ,y ,z),C2(x ,z);x ∈ {1,2},y ∈ {1,2,3},z ∈ {1,2,3}〉

◮ Applying Projection rule to C2(x ,z) yields
〈C1(x ,y ,z),C2(x ,z);x ∈ {1,2},y ∈ {1,2,3},z ∈ {1,2}〉

◮ Applying Projection rule to C1(x ,y ,z) yields
〈C1(x ,y ,z),C2(x ,z);x ∈ {1},y ∈ {1,2},z ∈ {1,2}〉

◮ Applying Projection rule to C2(x ,z) yields
〈C1(x ,y ,z),C2(x ,z);x ∈ {1},y ∈ {1,2},z ∈ {1}〉

◮ Applying Projection rule to C1(x ,y ,z) yields
〈C1(x ,y ,z),C2(x ,z);x ∈ {1},y ∈ {2},z ∈ {1}〉
(This CSP is hyper-arc consistent and happens to be solved).
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Example
Consider the Solve procedure and a CSP

〈C;x1 ∈ {1,2,3},x2 ∈ {1,2,3}}〉

given as its input where

C = {x1 6= x2,x1 ≥ x2}

Below the behaviour of Solve is given when (i) the goal is to find one
solution (Happy), (ii) no Preprocessing is done, (iii) Constraint
Propagation is based on the Projection rule, (iv) Splitting is based on
enumeration and (v) search (Proceed by Cases) on depth first
backtracking search.
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Example—cont’d
(Here: C = {x1 6= x2,x1 ≥ x2})

〈C;x1 ∈ {1,2,3},x2 ∈ {1,2,3}〉
Constraint Propagation

(does not give any simplifications)
Split by Enumeration

��	 @@R
〈C;x1 ∈ {1},x2 ∈ {1,2,3}〉

Constraint Propagation
〈C;x1 ∈ {1},x2 ∈ {}〉

Failed

〈C;x1 ∈ {2,3},x2 ∈ {1,2,3}〉
Constraint Propagation

(does not give any simplifications)
Split by Enumeration

��	 @@R
〈C;x1 ∈ {2},x2 ∈ {1,2,3}〉

Constraint Propagation
〈C;x1 ∈ {2},x2 ∈ {1}〉

Solved

〈C;x1 ∈ {3},x2 ∈ {1,2,3}〉
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Example: Boolean Constraints

◮ Happy: one solution has been found.

◮ Desired syntactic form (for preprocessing): Conjunctive normal
form (CNF).

◮ Preprocessing: Transform a Boolean circuit with constraints to a
set of clauses using Tseitin’s translation (see Lecture 5).

◮ This problem of finding a solution to a set of Boolean constraints
given in CNF is usually called the propositional satisfiability
problem (SAT) and systems for solving the problem SAT solvers.
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Boolean Constraints: Propagation

◮ Basic reduction step is given by the unit clause rule:
S∪{l}

S′

where S is a set of clauses, l is a unit clause (a literal) and S′ is
obtained from S by removing

(i) every clause that contains l and
(ii) the complement of l from every remaining clause.

(The complement of a literal: v = ¬v and ¬v = v .)
Example.
{¬v1,v1 ∨¬v2,v2 ∨ v3,¬v3 ∨ v1,¬v1 ∨ v4} ; {¬v2,v2 ∨ v3,¬v3}

◮ Unit propagation (UP) (aka Boolean Constraint Propagation
(BCP)):
apply the unit clause rule until a conflict (empty clause; denoted
by ⊥) is obtained or no new unit clauses are available.
Example.
{¬v2,v2 ∨ v3,¬v3} ; {v3,¬v3} ; {⊥} (conflict)
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Boolean Constraints—cont’d

◮ Split:

Apply the enumeration rule:
x ∈ {0,1}

x ∈ {0} | x ∈ {1}
Heuristics: a wide variety of heuristics used

◮ Proceed by cases: backtrack with propagation (and conflict
driven backjumping)

◮ This gives the DPLL-algorithm
(Davis-Putnam-Loveland-Logemann) which is the basis of most
of the state-of-the-art SAT solvers.
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Basic DPLL
Input: S is a set of clauses and M a set of literals
Output: If S has a model satisfying M, a set of literals giving such a
model otherwise ’UNSAT’

DPLL(S,M)
〈S′,M ′〉 := simplify(S,M);
if S′ = /0 then return M ′

else if ⊥ ∈ S′ then return ’UNSAT’
else

L := choose(S′,M ′);
M ′′ := DPLL(S′∪{L},M ′∪{L});
if M ′′ = ’UNSAT’ then return DPLL(S′∪{L},M ′∪{L})
else return M ′′

end if
end if

◮ DPLL(S,{}) returns a model satisfying S iff S is satisfiable.
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Basic DPLL—cont’d

◮ DPLL uses two subprocedures.

◮ simplify(S,M) implements constraint propagation
Typically based on UP in which case simplify(S,M) returns
〈S′,M ′〉 where S′ is the set of clauses obtained by applying unit
propagation to S and M ′ is M extended with unit literals found
when applying UP.

◮ choose(S′,M ′) implements the search heuristics, i.e., decides for
which variable the splitting rule is applied and which of the
branches is considered first.

◮ The performance of the procedure depends crucially on the
constraint propagation techniques and search heuristics.
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Enhanced DPLL
◮ Conflict Driven Clause Learning (CDCL): used in many

successful SAT solvers (minisat, zchaff, BerkMin, ...)
◮ Builds on learning new clauses from conflicts and doing

non-chronological backjumping based on the learned clauses
◮ Learned clauses can prune the search space very efficiently

(early detection of conflicts)
◮ Learned clauses provide an interesting basis for heuristics
◮ Restarting (but keeping learned clauses) seems to improve the

robustness of the solver
◮ Solvers spend most of the time (80–95%) doing unit propagation
◮ New data structures have been introduced for coping with large

instances (100k+ clauses)
◮ Watched literal technique
◮ Cache-aware implementation (small memory footprint, array

based techniques)
◮ Handling short clauses
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bczchaff

◮ The second home assignment is solved using the Boolean CSP
solver bczchaff.

◮ bczchaff solves Boolean CSPs given as Boolean circuits.

◮ It supports a wide range of gate functions (AND, OR, NOT,
EQUIV, IMPLY, ODD, EVEN, ITE, [l,u])

◮ bczchaff solver is based on an efficient state-of-the-art SAT
checker zchaff, which is a highly optimized implementation of
the DPLL algorithm with conflict driven clause learning.

◮ Given a Boolean circuit bczchaff simplifies the circuit and then
transforms it to CNF using an optimized version of the Tseitin’s
translation. The CNF form is solved using the zchaff engine and
results are translated back to refer to the gates of the original
circuit.
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Example
Find a truth assignment for Boolean variable b1, . . . ,bn such that if 3
to 5 of them are true, then 6 to 8 are false.

example.bc:
BC1.0
a0 := IMPLY(a1,a2);
a1 := [3,5](b1,b2,b3,b4,b5,b6,b7,b8,b9,b10);
a2 := [6,8](∼b1, ∼b2, ∼b3, ∼b4, ∼b5, ∼b6, ∼b7,
∼b8, ∼b9, ∼b10);
ASSIGN a0;

Running bczchaff:
> bczchaff example.bc
Parsing from example.bc
...
Number of Implication 163
a2 a1 ∼b10 ∼b9 ∼b8 ∼b7 ∼b6 b5 ∼b4 b3 ∼b2 b1 a0
Satisfiable
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