T-79.4201 Search Problems and Algorithms

Lecture 5: Constraint satisfaction: formalisms
and modelling

» When solving a search problem the most efficient solution
methods are typically based on special purpose algorithms.

» In Lectures 3 and 4 important approaches to developing such
algorithms have been discussed.

» However, developing a special purpose algorithm for a given
problem requires typically a substantial amount of expertise and
considerable resources.

» Another approach is to exploit an efficient algorithm already
developed for some problem through reductions.

I.N. & P.O. Autumn 2007 1

T-79.4201 Search Problems and Algorithms

Constraints

» Given variables Y :=yj,...,yx and domains Dy, ... Dy,
aconstraintConY isasubsetof Dy X --- X Dy .
» If kK =1, the constraint is called unary and if kK = 2, binary.

Example. Consider variables y;,y, both having the domain
D; = {0,1,2}. Then
NotEq = {(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}
can be taken as a binary constraint on y1,y, and then we denote it by
NotEq(y1,Y2) and if it is on y,,y1, then by NotEq(y2,y1).

» In what follows we use a shorthand notation for constraints by
giving directly the condition on the variables when it is clear how
to interpret the condition on the domain elements.

» Hence, cond(ys,...,Yk) on variables yi, ..., yx with domains
D;,...Dk denotes the constraint

{(d1,...,dx)|di€Djfori=1,...,k and cond(dy,...,dx) holds }

I.N. & P.O. Autumn 2007 3

T-79.4201 Search Problems and Algorithms

Exploiting Reductions

» Given an efficient algorithm for a problem A we can solve a
problem B by developing a reduction from B to A.
Algorithm for B:
Reduction R:(x> Algorithm
R for A

S

input x —> = Answer

» Constraint satisfaction problems (CSPs) offer attractive target
problems to be used in this way:

» CSPs provide a flexible framework to develop reductions, i.e.,
encodings of problems as CSPs such that a solution to the original
problem can be easily extracted from a solution of the CSP
encoding the problem.

» Constraint programming offers tools to build efficient algorithms for
solving CSPs for a wide range of constraints.

» There are efficient software packages that can be directly used for
solving interesting classes of constraints.

I.N. & P.O. Autumn 2007 2

T-79.4201 Search Problems and Algorithms

Constraints

Example

Condition y; # y, on variables y1,y, with domains D1, D, denotes the
constraint
{(dl,dz) | d, € Dl,dz c Dz,dl 75 dz}

So if 1,y both have the domain {0, 1,2}, then y; # y, denotes the
constraint NotEq(y,y2) above.

Example

Condition y; < %2 +% onyi, Y, both having the domain {0,1,2}
denotes the constraint

{(0h,60) | d1,0€ {0,1,2), 01 < 2+ 1) ={(0,0),(0,2),(0,2),(1,2)}.

I.N. & P.O. Autumn 2007 4

T-79.4201 Search Problems and Algorithms

Constraint Satisfaction Problems (CSPs)

» Given variables X1, ...,X, and domains Dq,...Dy,
a constraint satisfaction problem (CSP):

(C;xg € Dy,...,Xn € Dp)

where C is a set of constraints each on a subsequence of
X1,...,Xn.

Example

({NotEq(x1,x2), NotEq(x1,X3), NotEq (X2, X3) },
Xy € {07172}7)(2 € {07172}’)(3 € {O>1>2}>

is a CSP. We often use shorthands for the constrains and write

({x1 # X2,X1 # X3,%2 # X3},X1 €{0,1,2},x, € {0,1,2},x3 € {0,1,2})

T-79.4201 Search Problems and Algorithms

Example: Graph Coloring Problem

Given a graph G, the coloring problem can be encoded as a CSP as
follows.

» For each node v; in the graph introduce a variable V; with the
domain {1,...,n} where n is the number of available colors.

» For each edge (vi,V;) in the graph introduce a constraint V; # V;.

» This is a reduction of the coloring problem to a CSP because the
solutions to the CSP correspond exactly to the solutions of the
coloring problem:

a value assignment {Vq — ty,...,Vn — t, } satisfying all the
constraints gives a valid coloring of the graph where node v; is
colored with color t;.

I.N. & P.O. Autumn 2007 7

T-79.4201 Search Problems and Algorithms

CSPs I
» Fora CSP (C;x; € Dy,...,Xn € Dp) a potential solution is given
by a value assignment which a mapping T from {xy,...,Xn} to
D; U---UD, such that for each variable x;, T(x;) € D;.
» A value assignment T satisfies a constraint C on variables
Xigy oo X, If (T(Xil),.. .,T(Xim)) e C.
» Example. A value assignment T = {X3 — 1,X2+— 2,..., X, —n}
satisfies the constraint NotEq on X, X, because
(T(x1),T(x2)) = (1,2) € NotEq but
T ={x;+—1,%+—1,...,%, — 1} does not as
(T'(x1), T'(x2)) = (1,1) ¢ NotEq.
» A solutionto a CSP (C,x; € Dy,...,X, € Dy) is a value
assignment that satisfies every constraint C € C.
Example. Consider a CSP
<{X1 % X2,X1 7 X3,X2 # X3},X1 S {0, 1,2},X2 S {0,1,2},X3 € {0,1,2}>
The assignment {x; — 0,xz — 1,X3 — 2} is a solution to the CSP as
it satisfies all the constraints but {x; + 0,X, — 1,x3 +— 1} is not as it
does not satisfy the constraint x; # x3 (NotEq(X2,X3)).

I.N. & P.O. Autumn 2007 6

Example: SEND + MORE = MONEY

» Replace each letter by a different digit so that

SEND 9567
+ MORE + 1085
MONEY 10652

is a correct sum. The unique solution.
» Variables: S,E,N,D, M, O, R, Y
» Domains: [1..9] for S, Mand [0..9] forE, N, D, O, R, Y
» Constraints:
1000-S+100-E+4+10-N+D
+1000-M +100-O+10-R+E
=10000-M +1000-O+100-N+10-E+Y

x #y for every pair of variables x,y in{S, E, N, D, M, O, R, Y}.
» Itis easy to check that the value assignment

{S+—9,E—~5N—6D—7,M—1,0+—0,R—8Y — 2}

satisfies the constraints, i.e., is a solution to the problem.

I.N. & P.O. Autumn 2007 8

T-79.4201 Search Problems and Algorithms

N Queens

Problem: Place n queens on a n x n chess board so that they do not
attack each other.

» Variables: x1,...,X, (X; gives the position of the queen on ith
column)

» Domains: [1..n] for each x;,i =1,...,n

» Constraints: fori € [1..n—1] andj € [i +1..n]:
(i) xi # X; (rows)
(i) xi —xj 7 i —] (SW-NE diagonals)
(iii) x; — xj # j — i (NW-SE diagonals)

» When n = 10, the value assignment {x; — 3,X, — 10, X3 —
7,X4 — 4,X5 +— 1,Xg — 5,X7 > 2,Xg — 9,Xg > 6,X10 — 8} gives
a solution to the problem.

I.N. & P.O. Autumn 2007 e

Solving CSPs

» Constraints have varying computational properties.

» For some classes of constraints there are efficient special
purpose algorithms (domain specific methods/constraint solvers).
Examples

» Linear equations
» Linear programming
> Unification
» For others general methods consisting of
» constraint propagation algorithms and
» search methods
must be used.

» Different encodings of a problem as a CSP utilizing different sets
of constraints can have substantial different computational
properties.

» However, it is not obvious which encodings lead to the best
computational performance.

I.N. & P.O. Autumn 2007 11

T-79.4201 Search Problems and Algorithms

Constrained Optimization Problems

» Given: aCSP P := (C;x; € Dy,...,Xn € Dy) and a function obj
which maps solutions of the CSP to real numbers.

» (P,obj) is a constrained optimization problem (COP) where the
task is to find a solution T to P for which the value obj(T) is
optimal (minimal/maximal).

» Example. KNAPSACK: a knapsack of a fixed volume and n
objects, each with a volume and a value. Find a collection of
these objects with maximal total value that fits in the knapsack.

» Representation as a COP:
Given: knapsack volume v and n objects with volumes aq,...,a,
and values b, ..., b,.
Variables: X1,...,Xn
Domains: {0,1}
Constraint: ${L;a-x <V,
Objective function: 3, bj - X;.

I.N. & P.O. Autumn 2007 10

T-79.4201 Search Problems and Algorithms

Constraints

» In the course we consider more carefully two classes of
constraints: linear constraints and Boolean constraints.

» Linear constraints (Lectures 7-9) are an example of a class of
constraints which has efficient special purpose algorithms.

» Now we consider Boolean constraints as an example of a class
for which we need to use general methods based on propagation
and search.

» However, boolean constraints are interesting because

» highly efficient general purpose methods are available for solving
Boolean constraints;

» they provide a flexible framework for encoding (modelling) where it
is possible to use combinations of constraints (with efficient
support by solution techniques).

I.N. & P.O. Autumn 2007 12

T-79.4201 Search Problems and Algorithms

Boolean Constraints

» A Boolean constraint C on variables Xy, . .., X, with the domain
{true ,false } can be seen as a Boolean function
fc : {true ,false }" — {true,false } such that a value
assignment {x; — ty,...,Xy — t, } satisfies the constraint C iff
fc(ty,...,tq) = true.

» Typically such functions are represented as propositional
formulas.

» Solution methods for Boolean constraints exploit the structure of
the representation of the constraints as formulas.

I.N. & P.O. Autumn 2007 13

T-79.4201 Search Problems and Algorithms

Propositional formulas

» Syntax (what are well-formed propositional formulas):
Boolean variables (atoms) X = {xy,Xp,...}
Boolean connectives V, A\, —

> The set of (propositional) formulas is the smallest set such that all
Boolean variables are formulas and if @, and ¢, are formulas, so
are @1, (@1 A\ @), and (@1 V).
For example, ((x1 V X2) A —X3) is a formula but ((x1 V x2)—x3) is
not.

» A formula of the form x; or —x; is called a literal where ¥; is a
Boolean variable.

» We employ usual shorthands:
O — @ OV
O = @ (O V@) A (V)
GO (P AG)V (PN)

I.N. & P.O. Autumn 2007 15

Example: Graph coloring

» Consider the problem of finding a 3-coloring for a graph.
» This can be encoded as a set of Boolean constraints as follows:

» For each vertex v € V, introduce three Boolean variables vi,vz,V3
(intuition: v; is true iff vertex v is colored with color i).
» For each vertex v € V introduce the constraints

ViV Vs Vv
(Vl — _\Vz) N (Vl — _‘V3) N (Vg — _|V3)

» For each edge (v,u) € E introduce the constraint
(Vl — _‘Ul) A\ (Vz — _‘Uz) A (V3 — _|U3)

» Now 3-colorings of a graph (V, E) and solutions to the Boolean
constraints (satisfying truth assignments) correspond:
vertex v colored with color i iff v; assigned true in the solution.

I.N. & P.O. Autumn 2007 14

T-79.4201 Search Problems and Algorithms

Semantics

» Atomic proposition (Boolean variables) are either true or false
and this induces a truth value for any formula as follows.

» A truth assignment T is mapping from a finite subset X’ C X to
the set of truth values {true ,false }.

» Consider a truth assignment T : X’ — {true ,false } which is
appropriate to @, i.e., X (@) C X’ where X (@) be the set of
Boolean variables appearing in @.

» T | @(T satisfies @) is defined inductively as follows:

If @is a variable, then T |= @iff T (@) = true.

If @=—@, thenT = Qiff T =@

fO@=@A@, thenT EQ@iff TE@and T =@
fO=@ V@, thenT FQiff TE@oOTE@

Example

Let T(x;) =true, T(xz) = false.
Then T |=x1 VX but T B~ (X1 V —%2) A (—X1 AXz)

I.N. & P.O. Autumn 2007 16

T-79.4201 Search Problems and Algorithms

Representing Boolean Functions

» A propositional formula @ with variables Xy, ... ,X, expresses a
n-ary Boolean function f if for any n-tuple of truth values
t=(tg,...,t), f(t) =true if T =@and f(t) =false if T |~ @
where T(x) =t,i=1,...,n.

Proposition. Any n-ary Boolean function f can be expressed as a
propositional formula @ involving variables xi, ..., Xn.

Example.

» The idea: model each case of the X1 | X2 | f
function f having value true as a 0 (0|0
disjunction of conjunctions. 011

> Let F be the set of all n-tuples 101
t=(ty,...,ty) with f(t) = true. 1]1]0
For each t, let D; be a conjunction of &=
literals x; if t; = true and —; if (—x1 Axz) V
tj = false. (X1 A =%2)

> Let @ = Vier Dy

I.N. & P.O. Autumn 2007 17

T-79.4201 Search Problems and Algorithms

Normal Forms

» Many solvers for Boolean constraints require that the constraints
are represented in a normal form (typically in conjunctive normal
form).

Proposition. Every propositional formula is equivalent to one in
conjunctive (disjunctive) normal form.

CNF: (Ill\/"'\/Ilnl)/\"'/\(lml\/"'\/lmnm)
DNF: (Ill/\"'/\Ilnl)\/'"\/(lml/\"'/\lmnm)
where each |; is a literal (Boolean variable or its negation).

A disjunction |; V- - - V|, is called a clause.

A conjunction Iy A - -+ Aly is called an implicant.

I.N. & P.O. Autumn 2007 19

T-79.4201 Search Problems and Algorithms

Logical Equivalence

Definition

Formulas @, and @, are equivalent (¢, = @) iff for all truth
assignments T appropriate to both of them, T = @ iff T |= @,.

Example

(V)= (®Ve)

(A A@)AG)= (A (RN)
——Q=Q

(A AR)VE)=((eVEe)A (@Y @)
(ONAR)= (-0 V@)

(@Ve) =@

» Simplified notation:

(((x2V—X3) VX2) VX V (X2 V X5)) is written as

X1 VX3V X2V Xga VX2V Xg or X1V X3V X2 VXqVXg
» /L, ¢; stands for ¢; V-V y

A1 §i stands for 3 A--- A

I.N. & P.O. Autumn 2007 18

T-79.4201 Search Problems and Algorithms

Normal Form Transformations
CNF/DNF transformation:

1. remove < and —:
a—=pB ~ (-aVvB)A(=Bva) (1)
a—B ~ —-aVB (2

2. Push negations in front of Boolean variables:
-0 ~ ©))
—(aVvB) ~ —aA-B (4)
—(aAB) ~ —avV-B (5

3. CNF: move A connectives outside \VV connectives:
av(BAay) ~ (avB)A(avy) (6)
(@AB)VY ~ (avy)A(BVvy) (7)

DNF: move V connectives outside /A connectives:

aA(BVy) ~ (anB)v(ary) (8)
(aVB)AY ~ (aAY)V(BAY) (9)

I.N. & P.O. Autumn 2007 20

T-79.4201 Search Problems and Algorithms T-79.4201 Search Problems and Algorithms

Example
Transform (AVB) — (B < C) to CNFE . .
(AVB) ((B)C) () 1.2) Boolean Circuits
e R ,
~(AVB)V((-BVC)A(-CVB)) (4 » Normal forms are often quite an unnatural way of encoding

—AA-B)V((-BVC)A(-CVB)) (7) problems and it is more convenient to use full propositional logic.
-AV ((-BVC)A(—-CVB)))A(-BV((-BVC)A(—CVB))) (6)

(

(» In many applications the encoding is of considerable size and
((=AV(-BVC))A(-AV(-CVB)))A(—BV((—-BVC)A(=CVB))) (6)

(

(

different parts of the encoding have a substantial amount of

(=AV (-BVC))A(-AV(=CVB)))A((—-BV(-BVC))A(-BV(—-CVB) common substructure.

)
-AV-BVC)A(—AV-CVB)A(—BV-BVC)A(—-BV-CVB - . . .
)A()N ()A() » Boolean circuits offer an attractive formalism for representing the

> We can assume that normal forms do not have repeated required Boolean functions where compactness is enhanced by
clauses/implicants or repeated literals in clauses/implicants sharing common substructure.
(for example (-BV -BV C) = (—-BVC)).

» Normal form can be exponentially bigger than the original formula
in the worst case.

I.N. & P.O. Autumn 2007 21 I.N. & P.O. Autumn 2007 22
T-79.4201 Search Problems and Algorithms T-79.4201 Search Problems and Algorithms

Boolean Circuits

» A Boolean circuit C is a tuple (V,E,s) where

» (V,E) is an acyclic graph whose nodes are called gates. The Example. Boolean Circuit
nodes are divided into three categories:

> output gates (outdegree 0)

> intermediate gates v
» input gates (indgree 0) ! s(vi) =and/2

» s assigns a Boolean function s(g) to each intermediate and s(vz) =or/3
output gate g of appropriate arity corresponding to the indegree s(vz2) = equiv /2
of the gate. Vg ° @ U3
» Typical Boolean functions used For example vy is the output gate of the circuit
in the gates are V4,Vs, Ve are the input gates
and /n (n-input AND function), X1 | X2 | equiv/2 | xor /2 . . ;
or /n,not, equiv/2,xor /2, ... 010 1 0 ! ’ ’
0|1 0 1
110 0 1
1|1 1 0

I.N. & P.O. Autumn 2007 23 I.N. & P.O. Autumn 2007 24

Boolean Circuits—Semantics

» For a circuit a truth assignment T : X (C) — {true ,false } gives
a truth assignment to each gate in X(C) where X (C) is the set of
input gates of C.

» This defines a truth value T(g) for each gate g inductively when
the gates are ordered topologically in a sequence so that no gate
appears in the sequence before its input gates (this is always
possible because the circuit is acyclic):

» If g € X(C), then the truth assignment T (g) gives the truth value.

» Otherwise T(g) =f(T(g1),...,T(gn)) where (g1,9), ...and
(gn,g) are the edges entering g and f is the Boolean function
s(g) associated to g.

Example. For the previous example circuit C, X (C) = {Vv4, Vs, Ve }.
For a truth assignment T (v4) = T(vs) = T(ve) = false,
T(v3) = equiv(false ,false) = true, T (v,) = false, T (v;1) = false.

I.N. & P.O. Autumn 2007 25

Boolean Circuits vs. Propositional Formulas

» For each propositional formula @, there is a corresponding
Boolean circuit Cg such that for any T appropriate for both,
T(gg) =true iff T |= @for an output gate g of Cg .

Idea: just introduce a new gate for each subexpression.

(avb)A(—aVb)A
(aV-b)A(—aV-b)

» For each Boolean circuit C, there is a corresponding formula (.

» Notice that Boolean circuits allow shared subexpressions but
formulas do not.
For instance, in the circuit above gates a,b,c,d.

I.N. & P.O. Autumn 2007 27

Circuit Satisfiability Problem

» An interesting computational (search) problem related to circuits
is the circuit satisfiability problem.

» A constrained Boolean circuit is a pair (C,a) with a circuit C and
constraints a assigning truth values for some gates.

» Given a constrained Boolean circuit (C,0) a truth assignment T
satisfies (C,a) if it satisfies the constraints a, i.e., for each gate g
for which o gives a truth value, a(g) = T(g) holds.

Example. Consider the circuit with constraints
a(v4) = false, a(vy) = true.

» CIRCUIT SAT problem: Given a constrained Boolean circuit find
a truth assignment T that satisfies it.

This circuit has a satisfying truth assignment { \

T(vq) = false, T(vs) = T(vs) = true. ” @ "

If the constraints are a(v,) = false, a(vy) = C{%

true, the circuit is unsatisfiable. " v e

I.N. & P.O. Autumn 2007 26

T-79.4201 Search Problems and Algorithms

Circuits Compute Boolean Functions

» A Boolean circuit with output gate g and variables xi, ..., X
computes an n-ary Boolean function f if for any n-tuple of truth
valuest = (t1,...,t;), f(t) =T(g) where T(x;) =t,i =1,...,n.

» Any n-ary Boolean function f can be computed by a Boolean
circuit involving variables Xy, . .., X;.

» Not every Boolean function can be computed using a concise
circuit.

Theorem

For any n > 2 there is an n-ary Boolean function f such that no
Boolean circuit with % or fewer gates can compute it.

I.N. & P.O. Autumn 2007 28

T-79.4201 Search Problems and Algorithms

Boolean Circuits as Equation Systems
A Boolean circuit can be written as a system of equations.
v = and(e,f,g,h)

e =or(a,b)
f = or(b,c)
g =or(a,d)
h =or(c,d)
¢ =not(a)
d = not(b)
I.N. & P.O. Autumn 2007 29

T-79.4201 Search Problems and Algorithms

Example

Binary adder. Given input bits a, b and ¢

compute output bits 0,0, which give the sum of a, b, and c in binary.
As a formula:

o1 = ((a®b)@®c)

0, =(aAb)V(cA(a®db)

As a circuit:
01 = xor(x,c)
o, =or(l,r)
| =and(a,b)
r = and(c,x)
x = xor(a,b)

I.N. & P.O. Autumn 2007 31

T-79.4201 Search Problems and Algorithms

Boolean Modelling

» Propositional formulas/Boolean circuits offer a natural way of
modelling many interesting Boolean functions.

» Example. IF-THEN-ELSE ite(a, b, c) (if a then b else c.).

As a formula:
ite(a,b,c) = (aAb)V(—-aAc)
As a circuit:

ite = or(iy, i2)

iy = and(a,b)

i, = and(ay,c)

a; = not(a)

» Given gates a, b, c, ite(a,b,c) can be thought as a shorthand for
a subcircuit given above.

» Inthe bczchaf f tool used in the course ite(a, b, c) is provided as
a primitive gate functions.

I.N. & P.O. Autumn 2007 30

T-79.4201 Search Problems and Algorithms

Encoding Problems Using Circuits

» Circuits can be used to encode problems in a structured way.

» Example. Given three bits a, b, c find their values such that
if at least two of them are ones then either a or b is one else a or
c is one.

» We use IF-THEN-ELSE and adder circuits to encode this as a
CIRCUIT SAT problem as follows:
p = ite(02,x,p1)
py =or(a,c)
% full adder; gate o, omtted
o, =or(l,r)
| = and(a,b)
r = and(c,x)
x = xor(a,b)
» Now each satisfying truth assignment for the circuit with
constraint o(p) = true gives a solution to the problem.

I.N. & P.O. Autumn 2007 32

T-79.4201 Search Problems and Algorithms

Example. Reachability

Given a graph G = ({1,...,n},E), constructs a circuit R(G) such that
R(G) is satisfiable iff there is a path from 1 to n in G.

» The gates of R(G) are of the form
giik with 1 <i,j <nand0 <k <n
hij with 1 <i,j,k <n

> gik is true: there is a path in G from i to j not using any
intermediate node bigger than k.

> hij is true: there is a path in G from i to j not using any
intermediate node bigger than k but using k.

I.N. & P.O. Autumn 2007 33

T-79.4201 Search Problems and Algorithms

Example—cont'd

» Because of the constraints 0 on input gates there is at most one
possible truth assignment T.

» It can be shown by induction on k = 0,1,...,n that in this
assignment the truth values of the gates correspond to their given
intuitive readings.

» From this it follows:

R(G) is satisfiable iff T (ginn) = true in the truth assignment iff
there is a path from 1 to n in G without any intermediate nodes
bigger than n iff there is a path from 1 to n in G.

I.N. & P.O. Autumn 2007 35

T-79.4201 Search Problems and Algorithms

Example—contd
R(G) is the following circuit:

» For k =0, gjk is an input gate.
» Fork =1,2,...,n:
hix = and(gi(k—1), Ikj(k—1))
9k = or(gj(k—1), hix)
> Jinn iS the output gate of R(G).
» Constraints O:
For the output gate: a(ginn) = true
For the input gates: a(gjo) = true ifi =j or (i,j) is an edge in G
else a(gijo) = false.

I.N. & P.O. Autumn 2007 34

From Circuits to CNF

» Translating Boolean Circuits to an equivalent CNF formula can
lead to exponential blow-up in the size of the formula.

» Often exact equivalence is not necessary but auxiliary variables
can be used as long as at least satisfiability is preserved.

» Then a linear size CNF representation can be obtained, e.g.,
using the co-called Tseitin’s translation where given a Boolean
circuit C the corresponding CNF formula is obtained as follows

» anew variable is introduced to each gate of the circuit,

» the set of clauses in the normal form consists of the gate equation
(taken as an equivalence) written in a clausal form for each
intermediate and output gate with

» for each constraint a(g) =t, the corresponding literal for g added.

» This transformation preserves satisfiability and even truth
assignments in the following sense:
if C is a Boolean circuit and X its Tseitin translation, then for
every truth assignment T of C there is a satisfying truth
assignment T’ of X which agrees with T and vice versa.

I.N. & P.O. Autumn 2007 36

T-79.4201 Search Problems and Algorithms

From Circuits to CNF Il

Example.

Ul Consider the circuit with constraints

a(vy) =true,a(vy) = false.
Gate equations (taken as equivalences)
V2 ° @ U3 for non-input gates:
vi < (V2 Avs)
Vo (V4 V Vg \/Ve)
vy U5 Vg V3 < (V5 < V)

The resulting CNF for the translation:

(_\V]_ \/Vz) AN (_\V]_ \/V3) AN (Vl Vv V ﬁVg)/\
(Vg V —\V4) A (Vz V —|V5) VAN (Vz V ﬂVG) AN (ﬂVZ V'V4V Vs \/Ve)/\
(V3 VVsVVg) A (Va3 V =5V —vg) A(—v3 VsV —vg) A(—v3 V —vs V vg)A
v1 A vy [for constraints]

I.N. & P.O. Autumn 2007

