
T–79.4201 Search Problems and Algorithms

3 Search Spaces and Objective Functions.
Complete Search Methods

3.1 Search spaces and objective functions (1/4)

An instance I of a combinatorial search or optimisation problem
Π determines a search space X of candidate solutions.

The computational difficulty in such problems arises from the
fact that X is typically exponential in the size of I (= HUGE).

E.g. SAT(D):
Instance: F = propositional formula on n variables {x1, . . . ,xn}.
Search space: X = all truth assignments t : {x1, . . . ,xn}→ {0,1}.
Goal: find t ∈ X that makes F true.

Size of X = 2n points (0/1-vectors).

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

Search Spaces and Objective Functions (2/4)

Note that if SAT formulas are required to be in conjunctive
normal form (as in e.g. 3-SAT), then it can also be viewed as an
optimisation problem:

3-SAT(O):
Instance F = family of m 3-clauses on n variables {x1, . . . ,xn}.
Search space X = all truth assignments t : {x1, . . . ,xn}→ {0,1}.
Objective (cost) function: c(t) = # clauses not satisfied by t.
Goal: minimise c(t).

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

Search spaces and objective functions (3/4)

TSP(O):
Instance: An n×n matrix D of distances dij between n “cities”.
Search space: X = all permutations (“tours”) π of {1, . . . ,n}.
Objective function: d(π) = ∑n−1

i=1 dπ(i)π(i+1) +dπ(n)π(1).
Goal: minimise d(π).

Note: Here |X | = n!. (More precisely: |X | = (n−1)!/2, if the
starting points and orientations of tours are ignored.)

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

Search spaces and objective functions (4/4)

SPINGLASS (SPIN GLASS GROUND STATE)
Instance: An n×n matrix J of “coupling constants” Jij between n
“spins” and an n-vector h (“external field”). Together these
define an objective function (“Hamiltonian”) that for any spin
state or configuration s ∈ {−1,1}n has value

H(s) = −∑
〈i,j〉

Jijsisj −∑
i

hisi .

Goal:
(O) Find a spin configuration s ∈ {−1,1}n that minimises H(s)
(“ground state” of the system).

Here again |X | = 2n.

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

3.2 Complete Search Methods

I Backtrack search

I The DPLL procedure

I Branch-and-bound search

I The A* algorithm

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

3.2.1 Backtrack search (1/2)

Bactrack search is a systematic method to search for a
satisfying, or an optimal solution x in a search space X .

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

function backtrack(I:instance; x :partialsol):
if x is a complete solution then

return x
else

for all extensions e1, . . .ek to x do
x ′ ← backtrack(I,x ⊕ei);
if x ′ is a complete solution then return x ′

end for;
return fail

end if.

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

Backtrack search (2/2)

For instance, in the case of SAT, each partial truth assignment
t : {x1, . . . ,xi}→ {0,1} has two possible extension e0 and e1: one
assigns value 0 to variable xi+1 and the other assigns value 1.

In the case of TSP, the partial solutions could be nonrepeating
sequences of cities (initial segments of tours), and the
extensions could be choices of next city. (Also other
arrangements are possible).

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

3.2.2 The DPLL
(Davis-Putnam-Logemann-Loveland) procedure

A backtrack search method for testing satisfiability of a set of
clauses Σ on variable set V . Basic outline:

I If Σ is empty, return “satisfiable”.

I If Σ contains an empty clause, return “unsatisfiable”.

I If Σ contains a unit clause c = x±, assign to x a value
which satisfies c, simplify the remaining clauses
correspondingly, and call DPLL recursively.

I Otherwise select an unassigned x ∈ V , assign x ← 1,
simplify Σ, and call DPLL recursively. If this call returns
“satisfiable”, then return “satisfiable”; else assign x ← 0,
simplify Σ, and call DPLL recursively again.

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

3.2.3 Branch-and-bound search (1/2)
Pruning techniques can greatly improve the efficiency of
backtrack search in optimisation problems.

Consider e.g. the TSP problem and choose:

Partial solution: A set of edges (links) that have been decided to
either include or exclude from the complete solution tour.
Bounding heuristic: Let the TSP instance under consideration be
given by distance matrix D = dij . Then the following inequality
holds for any complete tour π:

d(π) =
1

2 ∑
i

{(dij +djk) | at city j tour π uses links ij and jk}

≥
1

2 ∑
j

min
i,k

(dij +djk).

This estimate can be used to lower bound the length of tours
achievable from any given partial solution, and prune the
search tree correspondingly.

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

Branch-and-bound search (2/2)
Consider the following small TSP instance:

d

c

ba

e

6

56

8

47

2

3

3

4

Using the above lower-bounding heuristic, the search tree for
the minimum tour on this instance can be pruned as presented
on the following slide.

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

acebdaabecdaabceda
tour tour tourtour

acbeda

be bebc

no constr.

ab ab

ac ac

bc

C = 19C = 21C = 23 C = 23

ac
ad
ae

ad
ae ae

ad ad
ae

ad
ae

ac
ad

aeC > 18

C > 18 C > 18,5

C > 18,5

C > 17,5

C > 17,5

C > 18,5

C > 23 C > 23,5

C > 20,5 C > 21

MINIMUM

1
2 ((2+3)+(3+3)+(4+4)+(2+5)+(3+6))

a cb d e

prune

prune

pruneprune

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

3.2.4 The A* algorithm

A* is basically a reformulation of the branch-and-bound search
technique in terms of path search in graphs.

Given:

I search graph [neighbourhood structure] (X ,N)

I start node x0 ∈ X

I set of goal nodes X ∗ ⊆ X

I edge costs c(x ,x ′) ≥ 0 for x ∈ X , x ′ ∈ N(x)

Goal: find a (minimum-cost) path from x0 to some x ∈ X ∗.

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

A*: Path length estimation
An important feature of A* is that the remaining distance from a
node x to a goal node is estimated by some heuristic h(x) ≥ 0.

As the algorithm visits a new node, it is placed in a set OPEN.
Nodes in OPEN are selected for further exploration in
increasing order of the evaluation function

f (x) = g(x)+h(x),

where g(x) ≥ dist(x0,x) is the shortest presently known
distance from the start node. (Here dist(x0,x) denotes the true
minimum-cost distance from x0 to x .)

A heuristic h(x) is admissible, if it underestimates the true
remaining minimum-cost distance h∗(x), i.e. if for all x ∈ X :

h(x) ≤ h∗(x) := min
x∗∈X∗

dist(x ,x∗).

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

function A*(X , N, x0, c, h):
place x0 in OPEN; set g(x0) = 0, f (x0) = h(x0);
while OPEN 6= /0 do

choose some x ∈ OPEN for which f (x) is minimum;
if x ∈ X∗ then return {found path to x};
move x from OPEN to CLOSED;
for all x ′ ∈ N(x) do

if x ′ is not yet in OPEN or CLOSED then
estimate h(x ′);
compute f (x ′) = g(x ′)+h(x ′),

where g(x ′) = g(x)+ c(x ,x ′);
place x ′ in OPEN

else {x ′ is already in OPEN or CLOSED}
recompute f (x ′) = g(x ′)+h(x ′);
if x ′ was in CLOSED and its f -value decreased then

move x ′ from CLOSED to OPEN
end while;
return fail {no path to goal found}.

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

A*: Convergence

A basic property of the A* algorithm is the following:

Theorem. Assume that the heuristic h is admissible. If the graph
(X ,N) is finite, and some path from x0 to X ∗ exists, then A*
returns one with a minimum cost.

Proof idea. By induction on the number of search steps, using the fact that h
is admissible (h(x) ≤ h∗(x)), establish the following:

I When a node x is moved from OPEN to CLOSED, all the preceding
nodes x ′ on some min-cost path from x0 to x are already in CLOSED
and satisfy g(x ′) = dist(x0,x ′). After the move the same holds for x .
(Thus with an admissible h, nodes are never re-OPENed.)

I Until a goal node x∗ is encountered, there is always some node x in
OPEN that lies on some min-cost start-to-goal path (and thus will
eventually be expanded).

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

A*: Notes

Note 1: The A* convergence theorem holds even for infinite
search graphs satisfying some structural conditions. (Every
node has only finitely many neighbours and all infinite paths
have infinite cost.)

Note 2: Convergence of the algorithm can be guaranteed also
for nonadmissible heuristics, but very little can be said about
the cost of the paths returned in that case.

Note 3: The special case h(x) ≡ 0 reduces to the well-known
Dijkstra’s algorithm for shortest paths in graphs.

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

A*: Examples

In these two examples of A* search in graphs with obstacles,
the heuristic h(x) is taken to be the Manhattan (square-block)
distance from a node x to the goal node x∗ when the obstacles
are ignored. The white nodes are in OPEN and the black nodes
in CLOSED when the algorithm terminates.

22

22

23

21

24

2019181716151413

8

8

8

7

9

6

10

5

11

4

3

2

2

2

3

24

24

20

64

21

5

6

6

6

6

6

6

6

8

7

7

5

7

5

7

5

7

6

8

8

8

8

4

4

10

7

7

9

9

7

5

3

9

4

10

10

10

2

2

5

9

11

9

3

1

12

2

8

8

4

4

13

3

11

9

7

5

3

14

14

14

15

1

15

13

16

2

0

12

12

17

1

1

13

11

18

4

2

10

10

10

10

23

19

3

3

11

9

11

9

22

20

4

12

12

8

8

6

21

5

5

13

11

9

7

20 2322

33

17

34

4

16

24

33

5

19

23

34

34

4

18

22

7

13

6

12

9

15

8

14

10

10

11

10

10

10

13121110 14

31

29

5

21

32

30

4

4

20

29

32

30

4

9

25

8

24

27

7

28

6

3

4

5

6

7

8

9

21

21

21

21

21

22

20

20

22

20

19

19

19

23

20

22

18

18

33

17

23

19

21

17

32

18

20

20

16

15

21

21

15

16

22

22

14

13

13

14

12

11

11

12

10

9

9

10

89

9

11

5

5

5

5

5

5

7

7

9

12

8

8

8

6

6

4

4

6

4

8

9

7

7

7

3

3

7

9

7

5

11

10

6

4

6

8

2

6

10

8

6

10

5

9

9

1

9

1

11

9

34

8

10

0

8

2

10

4

12

13

3

7

11

7

3

3

11

12

8

10

6

4

2

12

2

29

3

3

3

19

13

13

13

13

13

28

4

20

2

12

12

14

12

14

31

3

11

11

15

11

17

15

1

19

30

2

10

12

14

10

18

16

2

18

7

25

5

9

9

9

17

17

9

17

3

8

4

8

10

10

16

18

16

8

4

24

27

5

23

7

7

11

11

15

19

15

7

19

5

23

26

6

24

6

8

10

12

16

18

14

6

20

6

22

I.N. & P.O. Autumn 2007

T–79.4201 Search Problems and Algorithms

A* applied to SAT

Given propositional formula F on n variables {x1, . . . ,xn} in
conjunctive normal form, choose:

I search graph (T ,N), where
I T = all partial truth assignments t : {x1, . . . ,xn}→ {0,1,⊥}.
I (t, t ′) ∈ N if there is a unique variable xi for which t(xi) = ⊥,

t ′(xi) = 0/1.

I start node t0 = ⊥n.

I goal nodes T ∗ = truth assignments satisfying F .

I edge costs c(t, t ′) = 1 for t ∈ T , t ′ ∈ N(t).

Actually, a more relevant edge cost function for a formula F with
m clauses would be:

c(t, t ′) = m + (#clauses unsatisfied by t ′)− (#clauses unsatisfied by t).

What would be good heuristics in this case?
I.N. & P.O. Autumn 2007

