T-79.4201 Search Problems and Algorithms

Lecture 2: Combinatorial search and optimisation
problems

» Different types of computational problems

» Examples of computational problems

» Relationships between problems

» Computational properties of different problems.

I.N. & P.O. Autumn 2007 1

T-79.4201 Search Problems and Algorithms

Computational problems
Often more complicated questions are of interest:

» Search (function) problem:
given an instance find a solution (object satisfying certain
properties).
» Optimization problem:
given an instance find a best solution according to some cost
criterion.
Typically this is formalized by specifying
» what are feasible solutions for an instance and
» a cost function which assigns a cost (typically a integer/real
number) to each feasible solution.
Now a solution to an optimization problem instance is a feasible
solution that has the minimal (or maximal) cost.

» Counting problem:
given an instance count the number of solutions.

I.N. & P.O. Autumn 2007 3

T-79.4201 Search Problems and Algorithms

Computational problems

» A (computational) problem: an infinite set of possible instances
with a question.

» A decision problem: a question with a yes/no answer

Example

REACHABILITY
INSTANCE: A graph (V,E) and nodes v,u € V.
QUESTION: Is there a path in the graph from v to u?

I.N. & P.O. Autumn 2007 2

T-79.4201 Search Problems and Algorithms

Examples

» PATH
INSTANCE: A graph (V,E) and nodes v,u € V.
QUESTION: Find a path from v to u.

» SHORTEST PATH
INSTANCE: A graph (V,E) and nodes v,u € V.
QUESTION: Find a shortest path from v to u.

> #PATH
INSTANCE: A graph (V,E) and nodes v,u € V.
QUESTION: Count the number of simple paths from v to u.

I.N. & P.O. Autumn 2007 4

T-79.4201 Search Problems and Algorithms

Easy and hard problems

» Many problems are computationally easy: there is a polynomial
time algorithm for the problem, i.e. there is an algorithm solving
the problem whose run time increases polynomially w.r.t. the size
of the input instance. Consider, e.g., REACHABILITY.

» Some problems are not computationally easy: there is no known
guaranteed polynomial time algorithm for the problem, i.e. for any
known algorithm there is an infinite collection of instances for
which the run time increases super-polynomially w.r.t. the size of
the instance.

» This course focuses on methods for solving such problems in
practice.

I.N. & P.O. Autumn 2007 5

T-79.4201 Search Problems and Algorithms

Examples of hard problems (l1)

» CLIQUE
INSTANCE: A graph (V,E) and a positive integer k
QUESTION:
(D) Is there a k-clique in the graph, i.e. a set of k nodes such that
there is an edge between every pair of vertices from the set.
(S) Find a k-clique.
(O) Find an I-clique with the largest number | of vertices.
» SET COVER
INSTANCE: A family of sets F = {Sy,...,Sn} of subsets of a
finite set U and a positive integer k.
QUESTION:
(D) Is there k-cover of U, i.e., a set of k sets from F whose union
isU.
(S) Find a k-cover of U.
(O) Find a set I-cover of U with the smallest number | of sets.

I.N. & P.O. Autumn 2007 7

T-79.4201 Search Problems and Algorithms

Examples of hard problems

> SAT
INSTANCE: a propositional formula in conjunctive normal form
QUESTION:
(D) Is the formula satisfiable?
(S) Find a satisfiable truth assignment for the formula.
(O) Find a truth assignment that satisfies the most clauses in the
formula.

» GRAPH COLORING
INSTANCE: A graph (V,E) and a positive integer k
QUESTION:
(D) Is there a k-coloring of the graph, i.e. an assignment of one of
the k colors to each vertex such that vertices connected with an
edge do not have the same color?
(S) Find a k-coloring.
(O) Find an I-coloring with the smallest number | of colors.

I.N. & P.O. Autumn 2007 6

T-79.4201 Search Problems and Algorithms

Examples of hard problems (lll)

TSP (TRAVELING SALESPERSON)

INSTANCE: n cities 1,...,n and a nonnegative integer distance dj
between any two cities i and j (such that dj = dj;) and a positive
integer B.

QUESTION:

(D) Is there a tour of length at most B, i.e. a permutation Tt of the cities
such that the length

M >

dn(i)ni+1)
i=1
is at most B (where Ti(n+ 1) = 11(1))?
(S) Find a tour of length at most B.

(O) Find the shortest tour of the cities.

I.N. & P.O. Autumn 2007 8

T-79.4201 Search Problems and Algorithms

Relationship between problems

» An interesting relationship between two computational problems
A and B is that of a reduction.

» B reducesto A (B C A) if there is a transformation R which for
every input instance x of B produces an equivalent input instance
R(x) of A (where equivalent means that the answer (yes/no) for
R(x) considered as the input of A is the correct answer to x as an
input of B).

» For a reduction to be useful it needs to be relatively easy to
compute (compared to the problems A and B).

» Typically it is assumed that the reduction can be computed in
polynomial time.

I.N. & P.O. Autumn 2007 e

Example: 3-COL L SAT

» 3-COL

INSTANCE: a graph (V,E).

QUESTION: is there a 3-coloring of the graph.
» Reduction from 3-COL to SAT

For each vertex v € V: For each edge (v,u) € E:
v(1)Vv(2)Vv(3) =v(1)V-u(1)
—v(1)V-v(2) =v(2)V-u(2)
—=v(1)V-v(3) =v(3) Vv -u(3)
—v(2)V-v(3)

» This is a reduction because
(i) it can be computed efficiently and
(ii) it produces from an instance of 3-COL an equivalent instance
of SAT: the graph has a 3-coloring iff the set of clauses is
satisfiable.

I.N. & P.O. Autumn 2007 11

T-79.4201 Search Problems and Algorithms

Reduction

Reduction from B to A (B C A) can be exploited in two interesting
ways:

>

| 2

an algorithm for B can be built on top of an algorithm for A.
reduction implies that A is computationally at least as hard as B.

Algorithm for B:
Reduction R:(x> Algorithm
R for A

g

input x — = Answer

The former is used extensively in the course.

The latter is used in computational complexity theory (T-79.5103)
to classify computational problems; B C A orders problems by
difficulty.

I.N. & P.O. Autumn 2007 10

T-79.4201 Search Problems and Algorithms

Example: 3-SAT C INDEPENDENT SET

>

INDEPENDENT SET

INSTANCE: A graph G = (V,E) and an integer K.

QUESTION: Is there an independent set | C V with |I| =K.
(Asetl CVisindependentifi,j € | implies that there is no edge
between i and j).

Reduction from 3-SAT to INDEPENDENT SET

Given a set @ of m clauses each with three literals, construct a
graph whose vertices are the occurrences of the literals in ¢ and
add edges so that for each clause there is a separate triangle and
then add an edge between two vertices in different triangles if
they correspond to complementary literals.

Finally, set K = m.

I.N. & P.O. Autumn 2007 12

T-79.4201 Search Problems and Algorithms T-79.4201 Search Problems and Algorithms

Example: INDEPENDENT SET C CLIQUE
Example: 3-SAT C INDEPENDENT SET—contd xamp - Q

» Reduction from INDEPENDENT SET to CLIQUE
Given a G = (V,E) and an integer K, take the complement
graph G’ = (V,{(v,u) |v,u e V,(v,u) €E}.

» This is a reduction because an independent set of a graph is a
clique of the complement graph.

» This is a reduction because @is satisfiable iff there is an
independent set of size m for the graph.
(=) If @has a satisfying truth assignment, then take one vertex
from each triangle for which the corresponding literal is true in the
assignment and this gives an independent set of size m.

(<=) If there is an independent set of size m, then it contains > Reductions compose (are transitive):

exactly one vertex from each triangle and no two vertices 3-SAT C INDEPENDENT SET and

corresponding to complementary literals. Hence, the set induces INDEPENDENT SET L CLIQUE imply

a truth assignment for which each clause has a true literal 3-SAT L CLIQUE

implying that @is satisfiable. » Hence, using an algorithm for CLIQUE, we can solve

INDEPENDENT SET, 3-SAT, 3-COL using reductions.

I.N. & P.O. Autumn 2007 13 I.N. & P.O. Autumn 2007 14
Reductions—contd Size of the reductions

) i In practice not all polynomial time reductions are useful in building
» Reductions for search problems need a translation of the result

back to the original problem:

A reduction from a search problem B to A is a pair of mappings
(R,S) (both computable in polynomial time) such that for all x, z:
if x is an instance of B, then R(x) is an instance of Aand if z is a
correct output of R(x), then S(z) is a correct output of x.

» For optimization problems optimality needs to be preserved, too.

Algorithm for B:

NDUL X — Red. R:(xg Algorithm _z Red. S:(ZgAnswer
P R for A S

I.N. & P.O. Autumn 2007 15

algorithms on top of others but the size of the translation matters.

Example

» Consider a problem A for which we have a 2"/10% ajgorithm.

Hence, an input of length n=20000 needs 220000/1000 ~, 105 steps.

» We want to use this algorithm to solve a difficult problem B for
which we have a quadratic translation to A.

» Now the run time of the combined algorithm for B is
p(n) + 2""/1000 where p(n) is a polynomial giving the run time of
the translation from B to A.

» For an input of length n=20000 the run time is
p(zoooo) + 2200002/1000 2 2400000 2 1010000 StepS!

I.N. & P.O. Autumn 2007

16

T-79.4201 Search Problems and Algorithms

Relationship between different kinds of problems
Decision problems vs search problems
» A decision problem reduces to the corresponding search problem

trivially, i.e., if a search problem can be solved efficient so can the
corresponding decision problem.

» But also a search problem reduces to the corresponding decision
problem.

I.N. & P.O. Autumn 2007 17

T-79.4201 Search Problems and Algorithms

Decision vs optimization problems
Consider TSP(D) vs TSP(O)

» If TSP(O) can solved in polynomial time, then so can TSP(D).

» If TSP(D) can solved in polynomial time, then so can TSP(O).
> An optimal tour can be found using an algorithm which
1. finds the cost C of an optimal tour by binary search (with a
polynomial number of calls to the polynomial time algorithm for
TSP(D));
2. finds an optimal tour using C (with a polynomial number of calls to
the polynomial time algorithm for TSP(D)).

I.N. & P.O. Autumn 2007 19

T-79.4201 Search Problems and Algorithms

SET COVER(D) vs SET COVER(S)

» If SET COVER(S) can solved in polynomial time, then so can
SET COVER(D).

» If SET COVER(D) can solved in polynomial time, then so can
SET COVER(S) using the following algorithm given a family
F ={S4,...,Sn} of subsets of U and a positive integer k.

if setcover(F, k) returns “no” then return “no”;
| :=k-1;
forall S € {Sy,...,Sn} do

if setcover(F [S := true], I) returns “yes” then

T(S):=true; F :=F[S:=true];1:=1-1
else T(S) :=false ; F :=F[S :=false];
return T;

where setcover(F, k) is a procedure deciding whether F has a
k-cover; F[S := true | denotes F with the set S and its elements
removed from F and U; F[S := false] is just the set S removed
from F; and {S € F | T(S) = true } is the computed k-cover;

I.N. & P.O. Autumn 2007 18

T-79.4201 Search Problems and Algorithms

TSP(D) vs TSP(O)
A TSP(O) algorithm using a TSP(D) algorithm as a subroutine:

[*Find the cost C of an optimal tour by binary search*/
C :=0; C, :=D; /* D is the sum of maximal distances from each city */
while (C, > C) do
if there is a tour of cost |(C, +C)/2] or less then
Cu:=[(Cu+C)/2]
else C:=|(Cy+C)/2]+1;
/* Find an optimal tour */
For every intercity distance d(i,j) do
set the distance to C + 1,
if there is a tour of cost C or less, freeze the distance to C +1
else restore the original distance and add (i,j) to the tour;
endfor

I.N. & P.O. Autumn 2007 20

T-79.4201 Search Problems and Algorithms

Different kinds of optimization problems

» Consider the traveling salesperson problem and two new variants:
EXACT TSP: Given a distance matrix and an integer B, is the
length of the shortest tour equal to B?

TSP COST: Given a distance matrix, compute the length of the
shortest tour.

» |t can be shown that the four variants can be ordered in
“increasing complexity” by reductions:
TSP(D) ; EXACT TSP; TSP COST; TSP(O)

» All the four variants of TSP are polynomially equivalent: there is a
polynomial-time algorithm for one iff there is one for all four
(because TSP(D) and TSP(O) are).

I.N. & P.O. Autumn 2007 21

T-79.4201 Search Problems and Algorithms

Computational properties of problems (I1)

» The same holds for search problems where the correctness of
the found object can typically be checked in polynomial time but
where the “no” answer is more challenging to verify.

» Notice that even if the verification of a solution is easy, this does
not imply that finding a solution is easy.

» Many engineering problems fall into this class of problems

> A typical problem is to construct a mathematical object satisfying
certain specifications (path, solution of equations, routing, VLSI
layout,. . .).

» The decision version of the problem is determine whether at least
one such an object exists for the input.

» The object is usually not very large compared to the input.

» The specifications of the object are usually simple enough to be
checkable in polynomial time.

I.N. & P.O. Autumn 2007 23

T-79.4201 Search Problems and Algorithms

Computational properties of problems

» The previous arguments indicate that for a problem the decision,
search, and optimization variants are polynomially equivalent.

» However, this does not imply that they are equally easy to solve in
practice.

» There are differences if no polynomial algorithm is known.
» For a decision problem the “yes” answer is often easy to verify.

» Typically, the question is about existence of a certain objects
(witness/certificate) such as a satisfying truth assignment, a
coloring, ...

» If the witness is given, then the correctness of the “yes” answer
can be checked in polynomial time.

» However, the “no” answer is more challenging to verify because
there is no obvious witness/certificate for the answer, e.g., for the
lack of coloring.

I.N. & P.O. Autumn 2007 22

T-79.4201 Search Problems and Algorithms

Computational properties of problems (111)

» The decision versions of this class of problems form the problem
class NP, i.e., decision problems with polynomial size certificates
that are checkable in polynomial time.

» The hardest problems in this class (w.r.t. C) are called
NP-complete problems and they include, for example, SAT,
GRAPH COLORING, CLIQUE, SET COVER, TSP, ...

» To learn more, see computational complexity theory, for example,
course T-79.5103 in the autumn term.

» For optimization problems it is hard even to verify a solution.

» Consider an instance of the traveling salesperson problem and its
potential solution TT

» There seems to be no obvious polynomial time test that could
establish that Ttis actually a tour of the cities that has the shortest
possible length.

» Counting problems are often even harder.

I.N. & P.O. Autumn 2007 24

T-79.4201 Search Problems and Algorithms

Computational properties of optimization
problems

» The computational hardness of verifying a solution depends on
the type of an optimization problem.

» EXACT TSP: checking whether the length of the shortest tour
equals to B requires two calls to the decision problem:

» check whether there is a tour of length at most B?
» check whether there is not a tour of length at most B — 1?

» However, checking the length of the shortest tour seems to
require polynomial number of adaptive calls to the decision
procedure (see binary search above).

» The same holds for checking the shortest tour.

I.N. & P.O. Autumn 2007 25

T-79.4201 Search Problems and Algorithms

Algorithm design techniques for hard problems

» There are several approaches to developing efficient algorithms
for computationally challenging problems such as:
» identify special cases (using tools from complexity theory) and
develop special algorithms for these
» approximation algorithms
» randomized algorithms
» However, it typically requires a substantial amount of expertise
and resources to develop an efficient algorithm for a problem.

» For example, in practical applications it often happens that the
problem specification is not “mathematically clean” but includes a
number of “side conditions” and criteria which are fairly
complicated to integrate into an algorithm. Moreover, these “side
conditions” tend to change quite frequently.

» In this course we study search algorithms as a practical set of
tools to solve such problems.

I.N. & P.O. Autumn 2007 26

