1. Simulate the behaviour of the Lin–Kernighan 2-opt heuristic on the TSP instance below (this is the same instance as used in Problem 2 of last week’s tutorial), starting with the initial candidate route abcde.

2. Consider the MAX CUT optimisation problem discussed in Problem 3 of last week’s tutorial. Write down in pseudocode a Simulated Annealing method for optimising the objective function of this problem. Indicate in particular what is the neighbourhood relation you are using for the candidate solutions. Note also that MAX CUT is a maximisation problem, not minimisation as assumed in the general presentation of Simulated Annealing given at the lectures.

3. Consider the simulated annealing approach to solving the MAX CUT problem, as discussed above. What kind of cooling schedules would the simulated annealing convergence theorem presented at last week’s lecture suggest in the case of a 3-regular input graph with n nodes? (3-regular \equiv every node has exactly 3 neighbours.)

4. Consider the hypercube representation of the search space corresponding to the 3-SAT formula

$$(x_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (x_1 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor x_3),$$

discussed in Problem 1 of last week’s tutorial. Trace the progress of a (a) GSAT, (b) WalkSAT search with $p = 0$ along the corners of this hypercube, starting at initial point $(x_1, x_2, x_3) = (0, 0, 0)$.