11 Novel Methods

- Evolutionary strategies
- Coevolutionary algorithms
- Ant algorithms
- The “No Free Lunch” theorem

11.1 Evolutionary Strategies

- Evolutionary methods for continuous optimisation (Bienert, Rechenberg, Schwefel et al. 1960’s onwards). Unlike GA’s, some serious convergence theory exists.
- Goal: maximise objective function $f : \mathbb{R}^n \rightarrow \mathbb{R}$. Use population consisting of individual points in \mathbb{R}^n.
- Genetic operations:
 - Mutation: Gaussian perturbation of point
 - Recombination: Weighted interpolation of parent points
 - Selection: Fitness computation based on f. Selection either completely deterministic or probabilistic as in GA’s
- Typology of deterministic selection ES’s (Schwefel):
 - Population size $\mu \lambda$ offspring candidates generated by recombinations of μ parents.
 - ($\mu + \lambda$)-selection: best μ individuals from μ parents and λ offspring candidates together are selected.
 - (μ, λ)-selection: best μ individuals from λ offspring candidates alone are selected; all parents are discarded.

11.2 Coevolutionary Genetic Algorithms (CGA)

- Hillis (1990), Paredis et al. (from mid-1990’s)
- Idea: coevolution of interacting populations of solutions and tests/constraints as “hosts and parasites” or “prey and predator”
- Goals:
 1. Evolving solutions to satisfy a large & possibly implicit set of constraints
 2. Helping solutions escape from local minima by adapting the “fitness landscape”

Coevolution of sorting networks (1/3)

- Sorting networks: explicit designs for sorting a fixed number n of elements
- E.g. sorting network representing “bubble sort” of $n = 6$ elements:

```
 1 2 3 4 5 6
 1 2 3 4 5 6
 1 2 3 4 5 6
 1 2 3 4 5 6
 1 2 3 4 5 6
 1 2 3 4 5 6
```

- Interpretation: elements flow from left to right along lines; each connection (“gate”) indicates comparison of corresponding elements, so that smaller element continues along upper line and bigger element along lower line
- Quality measures: size = number of gates (comparisons), depth (“parallel time”)
Coevolution of sorting networks (2/3)

- Quite a bit of work in the 1960’s (cf. Knuth Vol. 3); size-optimal networks known for \(n \leq 8 \); for \(n > 8 \) the optimal design problem gets difficult.

- “Classical” challenge: \(n = 16 \). A general construction of Batcher & Knuth (1964) yields 63 gates; this was unexpectedly beaten by Shapiro (1969) with 62 gates, and later by Green (1969) with 60 gates. (Best known network.)

- Hillis (1990): Genetic and coevolutionary genetic algorithms for the \(n = 16 \) sorting network design problem:
 - Each individual represents a network with between 60 and 120 gates
 - Genetic operations defined appropriately
 - Individuals not guaranteed to represent proper sorting networks; behaviour tested on a population of test cases
 - Population sizes up to 65536 individuals, runs 5000 generations

Coevolution of sorting networks (3/3)

- Result when population of test cases not evolved: 65-gate sorting network

- Coevolution:
 - Fitness of networks = % of test cases sorted correctly
 - Fitness of test cases = % of networks fooled
 - Also population of test cases evolves using appropriate genetic operations

- Result of coevolution: a novel sorting network with 61 gates:

11.3 Ant Algorithms

- Dorigo et al. (1991 onwards), Hoos & Stützle (1997), …

- Inspired by experiment of real ants selecting the shorter of two paths (Goss et al. 1989):

 - Method: each ant leaves a *pheromone trail* along its path; ants make probabilistic choice of path biased by the amount of pheromone on the ground; ants travel faster along the shorter path, hence it gets a differential advantage on the amount of pheromone deposited.
Ant Colony Optimisation (ACO)

- Formulate given optimisation task as a path finding problem from source s to some set of valid destinations t_1, \ldots, t_n (cf. the A^* algorithm).
- Have agents (“ants”) search (in serial or parallel) for candidate paths, where local choices among edges leading from node i to neighbours $j \in N_i$ are made probabilistically according to the local “pheromone distribution” τ_{ij}:
 \[p_{ij} = \frac{\tau_{ij}}{\sum_{j \in N_i} \tau_{ij}}. \]
- After an agent has found a complete path π from s to one of the t_k, “reward” it by an amount of pheromone proportional to the quality of the path, $\triangle \tau \propto q(\pi)$.

ACO motivation

- Local choices leading to several good global results get reinforced by pheromone accumulation.
- Evaporation of pheromone maintains diversity of search. (i.e. hopefully prevents it getting stuck at bad local minima.)
- Good aspects of the method: can be distributed; adapts automatically to online changes in the quality function $q(\pi)$.
- Good results claimed for Travelling Salesman Problem, Quadratic Assignment, Vehicle Routing, Adaptive Network Routing etc.

- Have each agent distribute its pheromone reward $\triangle \tau$ among edges (i,j) on its path π: either as $\tau_{ij} \leftarrow \tau_{ij} + \triangle \tau$ or as $\tau_{ij} \leftarrow \tau_{ij} + \triangle \tau / \text{len}(\pi)$.
- Between two iterations of the algorithm, have the pheromone levels “evaporate” at a constant rate $(1 - \rho)$:
 \[\tau_{ij} \leftarrow (1 - \rho) \tau_{ij}. \]

- Several modifications proposed in the literature:
 (i) to exploit best solutions, allow only best agent of each iteration to distribute pheromone;
 (ii) to maintain diversity, set lower and upper limits on the edge pheromone levels;
 (iii) to speed up discovery of good paths, run some local optimisation algorithm on the paths found by the agents; etc.
An ACO algorithm for the TSP (1/2)

- Dorigo et al. (1991)
- At the start of each iteration, m ants are positioned at random start cities.
- Each ant constructs probabilistically a Hamiltonian tour π on the graph, biased by the existing pheromone levels. (NB. the ants need to remember and exclude the cities they have visited during the search.)
- In most variations of the algorithm, the tours π are still locally optimised using e.g. the Lin-Kernighan 3-opt procedure.
- The pheromone award for a tour π of length $d(\pi)$ is
 $$\Delta \tau = \frac{1}{d(\pi)}$$
 and this is added to each edge of the tour:
 $$\tau_{ij} \leftarrow \tau_{ij} + \frac{1}{d(\pi)}.$$

An ACO algorithm for the TSP (2/2)

- The local choice of moving from city i to city j is biased according to weights:
 $$a_{ij} = \frac{\tau_{ij}^\alpha (1/d_{ij})^\beta}{\sum_{j \in N_i} \tau_{ij}^\alpha (1/d_{ij})^\beta},$$
 where $\alpha, \beta \geq 0$ are parameters controlling the balance between the current strength of the pheromone trail τ_{ij} vs. the actual intercity distance d_{ij}.
- Thus, the local choice distribution at city i is:
 $$p_{ij} = \frac{a_{ij}}{\sum_{j \in N'_i} a_{ij}},$$
 where N'_i is the set of permissible neighbours of i after cities visited earlier in the tour have been excluded.

11.4 The “No Free Lunch” Theorem

- Wolpert & Macready 1997
- Basic content: All optimisation methods are equally good, when averaged over uniform distribution of objective functions.
- Alternative view: Any nontrivial optimisation method must be based on assumptions about the space of relevant objective functions. [However this is very difficult to make explicit and hardly any results in this direction exist.]
- Corollary: one cannot say, unqualified, that ACO methods are “better” than GA’s, or that Simulated Annealing is “better” than simple Iterated Local Search. [Moreover as of now there are no results characterising some nontrivial class of functions \mathcal{F} on which some interesting method \mathcal{A} would have an advantage over, say, random sampling of the search space.]

The NFL theorem: definitions (1/3)

- Consider family \mathcal{F} of all possible objective functions mapping finite search space x to finite value space y.
- A sample d from the search space is an ordered sequence of distinct points from x, together with some associated cost values from y:
 $$d = \{(d^x(1), d^y(1)), \ldots, (d^x(m), d^y(m))\}.$$
 Here m is the size of the sample. A sample of size m is also denoted by d_m, and its projections to just the x- and y-values by d^x_m and d^y_m, respectively.
- The set of all samples of size m is thus $\mathcal{D}_m = (x \times y)^m$, and the set of all samples of arbitrary size is $\mathcal{D} = \cup_m \mathcal{D}_m$.

I.N. & P.O. Spring 2006
The NFL theorem: definitions (2/3)

- An **algorithm** is any function a mapping samples to new points in the search space. Thus:
 $$a : D \rightarrow X,$$
 $$a(d) \notin d^x.$$

- **Note 1:** The assumption $a(d) \notin d^x$ is made to simplify the performance comparison of algorithms; i.e. one only takes into account **distinct** function evaluations. Not all algorithms naturally adhere to this constraint (e.g. SA, ILS), but without it analysis is difficult.

- **Note 2:** The algorithm may in general be stochastic, i.e. a given sample $d \in D$ may determine only a distribution over the points $x \in x - d^x$.

More precisely, such a sample is obtained by starting from some a-dependent search point $d^x(1)$, querying f for the value $d^y(1) = f(d^x(1))$, using a to determine search point $d^x(2)$ based on $(d^x(1), d^y(1))$, etc., up to search point $d^x(m)$ and the associated value $d^y(m) = f(d^x(m))$. The value sample d^y_m is then obtained by projecting the full sample d_m to just the y-coordinates.

The NFL theorem: definitions (3/3)

- A **performance measure** is any mapping Φ from cost value sequences to real numbers (e.g. minimum, maximum, average). Thus:
 $$\Phi : \mathbf{y}^* \rightarrow \mathbb{R},$$
 where $\mathbf{y}^* = \bigcup_m \mathbf{y}^m$.

- Finally, denote by $P(d^y_m | f, m, a)$ the probability distribution of value samples of size m obtained by using a (generally stochastic) algorithm a to sample a (typically unknown) function $f \in \mathcal{F}$.

The NFL theorem: statement

Theorem

[NFL] For any value sequence d^y_m and any two algorithms a_1 and a_2:

$$\sum_{f \in \mathcal{F}} P(d^y_m | f, m, a_1) = \sum_{f \in \mathcal{F}} P(d^y_m | f, m, a_2).$$
The NFL theorem: corollaries

Corollary

[1] Assume the uniform distribution of functions over \mathcal{F},
\[P(f) = \frac{1}{|\mathcal{F}|} = \frac{1}{|\mathcal{Y}| - |\mathcal{X}|}. \]
Then for any value sequence $d_{m}^{y} \in \mathcal{Y}^{m}$ and any two algorithms a_1 and a_2:
\[P(d_{m}^{y} \mid m, a_1) = P(d_{m}^{y} \mid m, a_2). \]

Corollary

[2] Assume the uniform distribution of functions over \mathcal{F}. Then the expected value of any performance measure Φ over value samples of size m,
\[E(\Phi(d_{m}^{y}) \mid m, a) = \sum_{d_{m}^{y} \in \mathcal{Y}^{m}} \Phi(d_{m}^{y}) P(d_{m}^{y} \mid m, a), \]
is independent of the algorithm a used.