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11 Novel Methods

» Evolutionary strategies

» Coevolutionary algorithms

» Ant algorithms

» The “No Free Lunch” theorem
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11.2 Coevolutionary Genetic Algorithms (CGA)

» Hillis (1990), Paredis et al. (from mid-1990’s)

» Idea: coevolution of interacting populations of solutions
and tests/constraints as “hosts and parasites” or “prey and
predator”

» Goals:
1. Evolving solutions to satisfy a large & possibly implicit
set of constraints
2. Helping solutions escape from local minima by
adapting the “fitness landscape”
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11.1 Evolutionary Strategies

» Evolutionary methods for continuous optimisation (Bienert,
Rechenberg, Schwefel et al. 1960’s onwards). Unlike GA'’s,
some serious convergence theory exists.

» Goal: maximise objective function f : R" — R. Use
population consisting of individual points in R".
» Genetic operations:

» Mutation: Gaussian perturbation of point
» Recombination: Weighted interpolation of parent points
» Selection: Fithess computation based on f. Selection either

completely deterministic or probabilistic as in GA’s
» Typology of deterministic selection ES’s (Schwefel):
» Population size W A offspring candidates generated by
recombinations of H parents.
» (M+A)-selection: best pindividuals from W parents and
A offspring candidates together are selected.
» (W,A)-selection: best W individuals from A offspring candidates

alone are selected; all parents are discarded.
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Coevolution of sorting networks (1/3)

» Sorting networks: explicit designs for sorting a fixed
number n of elements

» E.g. sorting network representing “bubble sort” of n =6
elements:

» Interpretation: elements flow from left to right along lines;
each connection (“gate”) indicates comparison of
corresponding elements, so that smaller element continues
along upper line and bigger element along lower line

» Quality measures: size = number of gates (comparisons),
depth (“parallel time”)
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Coevolution of sorting networks (2/3)

» Quite a bit of work in the 1960’s (cf. Knuth Vol. 3);
size-optimal networks known for n < 8; for n > 8 the optimal
design problem gets difficult.

» “Classical” challenge: n = 16. A general construction of
Batcher & Knuth (1964) yields 63 gates; this was
unexpectedly beaten by Shapiro (1969) with 62 gates, and
later by Green (1969) with 60 gates. (Best known network.)

» Hillis (1990): Genetic and coevolutionary genetic
algorithms for the n = 16 sorting network design problem:

» Each individual represents a network with between 60 and 120
gates

» Genetic operations defined appropriately

» Individuals not guaranteed to represent proper sorting networks;
behaviour tested on a population of test cases

» Population sizes up to 65536 individuals, runs 5000 generations
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Coevolution of sorting networks (3/3)

» Result when population of test cases not evolved: 65-gate
sorting network

» Coevolution:

» Fitness of networks = % of test cases sorted correctly

> Fitness of test cases = % of networks fooled

» Also population of test cases evolves using appropriate genetic
operations

» Result of coevolution: a novel sorting network with 61
gates:

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

11.3 Ant Algorithms

» Dorigo et al. (1991 onwards), Hoos & Stutzle (1997), ...

» Inspired by experiment of real ants selecting the shorter of
two paths (Goss et al. 1989):

» Method: each ant leaves a pheromone trail along its path;
ants make probabilistic choice of path biased by the
amount of pheromone on the ground; ants travel faster

along the shorter path, hence it gets a differential
advantage on the amount of pheromone deposited.
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Ant Colony Optimisation (ACO)

» Formulate given optimisation task as a path finding
problem from source s to some set of valid destinations
t1,...,ty (cf. the A* algorithm).

» Have agents (“ants”) search (in serial or parallel) for
candidate paths, where local choices among edges leading
from node i to neighbours j € N; are made probabilistically
according to the local “pheromone distribution” Tj:

Yien, Ti
» After an agent has found a complete path 1tfrom s to one

of the ty, “reward” it by an amount of pheromone
proportional to the quality of the path, At O q(1).

Pjj
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ACO motivation

» Local choices leading to several good global results get
reinforced by pheromone accumulation.

» Evaporation of pheromone maintains diversity of search.
(I.e. hopefully prevents it getting stuck at bad local minima.)

» Good aspects of the method: can be distributed; adapts
automatically to online changes in the quality function q().

» Good results claimed for Travelling Salesman Problem,

Quadratic Assignment, Vehicle Routing, Adaptive Network
Routing etc.
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» Have each agent distribute its pheromone reward At
among edges (i,j) on its path Tt either as t; < 1; + At or
as T < Tjj + AT/'Gn(T[).

» Between two iterations of the algorithm, have the
pheromone levels “evaporate” at a constant rate (1 — p):

Tjj «— (1 — p)Tij-
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» Several modifications proposed in the literature:

(i) to exploit best solutions, allow only best agent of each
iteration to distribute pheromone;
(i) to maintain diversity, set lower and upper limits on the
edge pheromone levels;
(iii) to speed up discovery of good paths, run some local
optimisation algorithm on the paths found by the agents;
etc.
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An ACO algorithm for the TSP (1/2)

An ACO algorithm for the TSP (2/2)

» The local choice of moving from city i to city j is biased

>

>

Dorigo et al. (1991)

At the start of each iteration, m ants are positioned at
random start cities.

Each ant constructs probabilistically a Hamiltonian tour 1t
on the graph, biased by the existing pheromone levels.
(NB. the ants need to remember and exclude the cities
they have visited during the search.)

In most variations of the algorithm, the tours mtare still
locally optimised using e.g. the Lin-Kernighan 3-opt
procedure.

The pheromone award for a tour ttof length d(m) is

At =1/d(m), and this is added to each edge of the tour:
Tjj < Tjj + 1/d(Tl').
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11.4 The “No Free Lunch” Theorem

» Wolpert & Macready 1997
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Basic content: All optimisation methods are equally good,
when averaged over uniform distribution of objective
functions.

Alternative view: Any nontrivial optimisation method must
be based on assumptions about the space of relevant
objective functions. [However this is very difficult to make
explicit and hardly any results in this direction exist.]

Corollary: one cannot say, unqualified, that ACO methods
are “better” than GA’s, or that Simulated Annealing is
“better” than simple Iterated Local Search. [Moreover as of
now there are no results characterising some nontrivial
class of functions # on which some interesting method a
would have an advantage over, say, random sampling of
the search space.]
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according to weights:
o T (1/dy)P
' Sien T (1/d;)P,

where o, 3 > 0 are parameters controlling the balance
between the current strength of the pheromone trail T;; vs.
the actual intercity distance dj.

» Thus, the local choice distribution at city i is:

aij

Pj=———>
YjeN! @i

where N/ is the set of permissible neighbours of i after
cities visited earlier in the tour have been excluded.
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The NFL theorem: definitions (1/3)

» Consider family # of all possible objective functions

mapping finite search space x to finite value space o .

A sample d from the search space is an ordered sequence
of distinct points from x , together with some associated
cost values from o :

d ={(d*(1),d”(2)),...,(d*(m),d"(m))}.

Here m is the size of the sample. A sample of size m is also
denoted by d,, and its projections to just the x- and
y-values by dX and dj,, respectively.

The set of all samples of size mis thus o, = (x x o )7,
and the set of all samples of arbitrary size is » = Uy .
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The NFL theorem: definitions (2/3)

» An algorithm is any function a mapping samples to
new points in the search space. Thus:

a(d) ¢ d*.

» Note 1: The assumption a(d) ¢ d* is made to simplify the
performance comparison of algorithms; i.e. one only takes
into account distinct function evaluations. Not all algorithms
naturally adhere to this constraint (e.g. SA, ILS), but
without it analysis is difficult.

a:o» —x,

» Note 2: The algorithm may in general be stochastic, i.e. a
given sample d € D may determine only a distribution over
the points x € x —d*.
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» More precisely, such a sample is obtained by starting from

some a-dependent search point d*(1), querying f for the
value d¥(1) =f(d*(1)), using a to determine search point
d*(2) based on (d*(1),d¥(1)), etc., up to search point
d*(m) and the associated value d¥(m) =f(d*(m)). The
value sample dy, is then obtained by projecting the full
sample d,, to just the y-coordinates.
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The NFL theorem: definitions (3/3)

» A performance measure is any mapping ¢ from cost value
sequences to real numbers (e.g. minimum, maximum,
average). Thus:

b9 >R,

where v * = Uy ™:

» Finally, denote by P(d;, | f,m,a) the probability distribution
of value samples of size m obtained by using a (generally
stochastic) algorithm a to sample a (typically unknown)
functionf € 7 .
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The NFL theorem: statement

Theorem

[NFL] For any value sequence d2, and any two algorithms a;
and ay:

Z P(d), |f,m,a;) = Z P(dY, | f,m,az).

fer fer
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The NFL theorem: corollaries

Corollary
[1] Assume the uniform distribution of functions over 7 ,
P(f)=1/|# | = | |"1*I. Then for any value sequence d}, € » ™

and any two algorithms a; and ay:

P(dm [ m,a1) = P(dy [ m,az).

Corollary

[2] Assume the uniform distribution of functions over # . Then
the expected value of any performance measure ¢ over value
samples of size m,

E(®(dp) [m,a)= 5 &(dy)P(dy [ m,a),

dneym
is independent of the algorithm a used.
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