Solving MIPs

- A typical approach is to use branch and bound search with a suitable relaxation.
- A relaxation of a problem removes constraints in order to get an easier to solve problem.
- Given a MIP P, its relaxation $R(P)$ is a problem satisfying the following conditions (for a minimization problem P):
 - the optimal solution value to $R(P)$ is no more than that of P,
 - if the solution to $R(P)$ is feasible to P, then it is optimal for P,
 - if $R(P)$ is infeasible, then so is P.
- A useful relaxation of a MIP P satisfying these condition is the linear relaxation $LR(P)$ of P which is obtained by removing the integrality constraints from P.
- Linear relaxation is computationally interesting because it is a strong relaxation, it provides a global view on the constraints, and it generates “dual values” for the constraints.

Branching

- Branching creates new subproblems based on an optimal solution x^* to $R(P)$ that is infeasible to P.
- The subproblems P_1, \ldots, P_k must satisfy the following properties:
 - Every feasible solution to P is feasible to at least one of P_1, \ldots, P_k.
 - x^* is infeasible in each of $R(P_1), \ldots, R(P_k)$.
- For the linear relaxation, x^* is infeasible iff there is variable x_j that has a fractional value x_j^* in x^*.
- In this case we can create two new problems:
 - one with the additional constraint $x_j \leq \lfloor x_j^* \rfloor$,
 - one with the additional constraint $x_j \geq \lfloor x_j^* \rfloor + 1$.

Branch and bound

Given a MIP P and its relaxation $R(P)$, branch and bound works as follows:

1. Solve $R(P)$ to get an optimal relaxation solution x^*.
2. If $R(P)$ is infeasible, then so is P
 - else if x^* is feasible to P, then x^* is optimal to P
 - else create new problems P_1, \ldots, P_k by branching and solve recursively. Stop examining a subproblem if it cannot be optimal to P (bounding).
Bounding

- Bounding also uses relaxation.
- Suppose we have generated a feasible solution to some subproblem with objective value \(z^* \). This could be optimal to a subproblem but we do not yet know whether it is optimal to \(P \).
- If we now have a subproblem with relaxation objective value \(z' \geq z^* \), then we can cease examining this subproblem (Bounding).
- This is because further branching can only increase the objective value.

Improving Effectiveness

- Careful formulation
 - Strong relaxations typically work well but are often bigger in size.
 - Break symmetries.
 - Multiple "big-M" values often lead to performance problems.
 - Deciding which formulation works better needs often experimentation.
- Cutting plans
 These are constraints that are added to a relaxation to "cut off" the optimal relaxation solution \(x^* \). Often are problem specific but there are also general techniques (e.g. Gomory cuts).
- Special branching rules
 In many systems, for example, Special Ordered Sets are available.

Solving Linear Relaxation

- Linear Relaxation of a MIP gives a linear program (LP)
- There are a number of well-known techniques for solving LPs
 - Simplex
 The oldest and most widely used method with very mature implementation techniques.
 Worst-case time complexity exponential but seems to work extremely well in practice.
 - Interior point methods
 A newer approach; polynomial time worst case time complexity; implementation techniques advancing
- Next Simplex method is reviewed as an example.

Simplex Method

- Assume that the linear program is in standard form:
 \[
 \min cx \text{ s.t.} \\
 Ax = b \\
 x \geq 0
 \]
- The basic idea: start from a basic feasible solution ("a corner point") and look at the adjacent ones. If an improvement in cost is possible by moving to an adjacent solution, we do so. An optimal solution has been found if no improvement is possible.
- Next we briefly review the basic concepts needed:
 - basic feasible solutions (bfs)
 - move from one bfs to another (pivoting)
 - the overall simplex algorithm
Basic Feasible Solutions

- Assume an LP in standard form.
 \[
 \begin{align*}
 \text{min } & \quad cx \\
 \text{s.t. } & \quad Ax = b \\
 & \quad x \geq 0
 \end{align*}
 \]
 where \(A \) is a \(m \times n \) matrix and \(m < n \).

- A basis of \(A \) is a linearly independent collection \(\{ A_j, \ldots, A_m \} \) of column vectors \(A_j \) of \(A \). The basis can be treated as a \(m \times m \) nonsingular matrix \(B = [A_j] \).

- The basic solution corresponding to \(B \) is a vector \(x \) such that
 \[
 x_j = \begin{cases}
 0 & \text{if } A_j \text{ is not in the basis and} \\
 x_{k} & \text{the } k\text{th component of } B^{-1}b \text{ otherwise.}
 \end{cases}
 \]

- A basic feasible solution (bfs) is a basic solution such that \(x_i \geq 0 \) for all \(i \).

- Note that a basic solution is obtained by setting \(n - m \) variables to zero and solving the resulting set of equations for the remaining \(m \) variables. If there is a unique solution, this is gives a basic solution.

Moving from bfs to bfs

- The idea is to remove one variable from the basis and replace it with another. This is called pivoting.

- In simplex this is organized as a manipulation of a tableau where, for instance, a set of equations
 \[
 \begin{align*}
 3x_1 &+ 2x_2 + x_3 + x_4 = 1 \\
 5x_1 &+ x_2 + x_3 + x_4 = 3 \\
 2x_2 &+ 5x_2 + x_3 + x_5 = 4
 \end{align*}
 \]
 is represented as
 \[
 \begin{array}{cccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 \\
 1 & 3 & 2 & 1 & 0 & 0 \\
 3 & 5 & 1 & 1 & 1 & 0 \\
 4 & 2 & 5 & 1 & 0 & 1 \\
 \end{array}
 \]

Example

- Consider the LP
 \[
 \begin{align*}
 \text{min } & \quad 2x_2 + x_4 + 5x_7 \\
 \text{s.t. } & \quad x_1 + x_2 + x_3 + x_4 + x_5 = 4 \\
 & \quad x_1 + x_3 + x_6 = 2 \\
 & \quad 3x_2 + x_3 + x_7 = 3 \\
 & \quad x_1, \ldots, x_7 \geq 0
 \end{align*}
 \]
 A possible basis:
 \[
 \{ A_4, A_5, A_6, A_7 \}
 \]
 and the corresponding matrix:
 \[
 B = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 \\
 \end{bmatrix}
 \]
 Now the basic solution is
 \[
 x_0 = (0, 0, 0, 4, 2, 3, 6)
 \]
 and the corresponding matrix:
 \[
 B^{-1}b = \begin{bmatrix}
 4 \\
 2 \\
 3 \\
 6 \\
 \end{bmatrix}
 \]

Tableaux

- Pivoting is handled by keeping the set of equations diagonalized with respect to the basic variables.

- This can be achieved using elementary row operations: multiplying a row with a non-zero constant; adding a row to another.

Example.

Given a basis \(B = \{ A_3, A_4, A_5 \} \), we can transform the tableau to a diagonalized form w.r.t. the basic variables \(x_3, x_4, x_5 \) by multiplying Row 1 with \(-1\) and adding it to Rows 2 and 3:
Tableaux—cont’d

- Notice that in the diagonalized form column 0 gives the values of the basic variables in the bfs \(x_0\) in question:
 \[
x_0B(i) = x_{i,0}, i = 1, \ldots, m
 \]
 where \(B(i)\) denotes the \(i\)th basic variable (column).

- Example. Consider the set of equations:

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>(-1)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>(-1)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Given the basis \(B = \{A_3, A_4, A_5\}\), \(B(1) = 3, B(2) = 4, B(3) = 5\) and for its basic solution \(x_0\) holds: \(x_{03} = 1, x_{04} = 2, x_{05} = 3\).

Pivoting

- In pivoting variable \(x_j\) enters the basis and variable \(x_i\) leaves it.
- In the tableau this defines a pivot element \(x_{ij}\) where column \(j\) corresponds to the entering variable \(x_j\) and row \(i\) to the leaving variable \(x_i\) such that \(B(i) = i\). We say that we pivot on \(x_{ij}\).
- In pivoting the tableau is brought to the diagonalized form w.r.t. the new basis using elementary row operations (Gaussian elimination):
 - for the pivot row \(i\), all elements are divided by the pivot element and, hence, the pivot element in the new tableau is 1;
 - for other rows \(i\), the resulting pivot row multiplied by \(x_{ij}\) is subtracted from the row, and, hence all elements in column \(j\) (except the pivot element) are 0 in the new tableau.

- This means that
 \[
x_{i,q} = \frac{x_{iq}}{x_{ij}} \quad q = 0, \ldots, n
 \]
 \[
x_{i,q} = x_{i,q} - x_{ij}'x_{ij} \quad i = 1, \ldots, m; i \neq l
 \]
 \[
 q = 0, \ldots, n
 \]
 where \(x_{ij}\) and \(x_{ij}'\) are the old and new tableaux, respectively.

Example

- Consider the tableau

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>(-1)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>(-1)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- and the case where \(x_1\) enters and \(x_3\) leaves the basis.
- Now the pivot element is \(x_{1,1}\) as \(B(1) = 3\), and
- the new tableau

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(-\frac{1}{3})</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(-\frac{1}{3})</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(-\frac{1}{3})</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- and the new basis is \(x_1, x_4, x_5\) and, hence, \(B(1) = 1, B(2) = 4, B(3) = 5\).

Cost Function in the Tableau

- A cost function \(z = cx\) can added as an extra equation \(-z + cx = 0\) to the tableau (no need to add a column for \(z\)).
- To start, we need a bfs and to make zero the \(c_i\)'s for the basic columns.
- This can be done using elementary row operations.
- Consider the example with 3, 4, and 5 in the bfs.
- After transformation to the diagonalized form, subtract the resulting Rows 1, 2, 3 from Row 0, to get the desired form:

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Our running example and a cost function

\[
z = x_1 + x_2 + x_3 + x_4 + x_5
\]
lead to a tableau:

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6</td>
<td>-3</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Choosing a Profitable Column

- It turns out that the cost function can be improved if we move to a bfs containing a non-basic variable x_j where the corresponding value c_j in the tableau is negative.
- If no such c_j exists, then an optimal solution has been found.
- In the previous example the bfs corresponding to Columns 3, 4, and 5 is not optimal because $c_1 = c_2 = -3 < 0$.
- Hence, we could move to a new bfs with entering variable x_1 or x_2 to improve the cost function.
- But how to choose the leaving variable?

Choosing the Leaving Variable

- The idea is to move to an adjacent bfs containing the entering variable x_j.
- In order not to miss an adjacent bfs we need to choose a pivot element $x_{k,j}$ with the smallest positive ratio $\frac{x_{0k}}{x_{k,j}}$, that is, a $x_{k,j}$ such that
 \[
 \frac{x_{0k}}{x_{k,j}} = \min_i \left(\frac{x_{0i}}{x_{i,j}} \right)_{x_{i,j}>0}
 \]
 where x_0 is the current bfs.
- Then the leaving variable is $B(k)$.

Example

- Consider the tableau

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_0</td>
<td>-6</td>
<td>-3</td>
<td>-3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-1</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- If x_2 is the entering variable, then the pivot element is $x_{1,2}$ because the smallest positive ratio $\frac{x_{01}}{x_{1,2}}$ is $\frac{1}{2}$ for $k = 1$.

Simplex algorithm

```plaintext
procedure Simplex
    opt := "no"; unbounded := "no";
    while opt = "no" and unbounded = "no" do
        if $c_j \geq 0$ for all $j$ then
            opt := "yes"
        else
            choose any $j$ such that $c_j < 0$ ;
            if $x_{i,j} \leq 0$ for all $i$ then
                unbounded := "yes"
            else
                find $\min_i \left( \frac{x_{0i}}{x_{i,j}} \right)_{x_{i,j}>0}$ = $\frac{x_{0k}}{x_{k,j}}$
                and pivot on $x_{k,j}$
            end if
        end if
    end while.
```

I.N. & P.O. Spring 2006
Example

Consider the tableau on the right (above).

Running Simplex on this tableau, we notice that for Columns 1 and 2, \(c_j < 0 \).

If we choose \(c_2 \), then we need to pivot on \(x_{1,2} \) as argued in the previous example.

Then the new tableau is on the right (below).

Here all \(c_j \)s are positive and, hence, an optimal solution \((0, \frac{1}{2}, 0, \frac{5}{2}, \frac{3}{2})\) has been found with cost \(\frac{9}{2} \) (\(-z = -\frac{9}{2} \)).

Further Issues

For an efficient implementation of Simplex there are a number issues that need to be handled:

- Finding the first bfs to start Simplex: artificial variable method, two-phase method, . . .
- How to choose the entering variable: nonbasic gradient method (choosing the most negative \(c_j \)), greatest increment method, . . .
- How to choose the pivot element in case of a tie: avoiding cycling, . . .

Summary: Solving MIPs

- Experiment with different formulations as well as different systems and solving techniques to see which performs best.
- Avoid multiple “big-M” values.
- Try to break symmetries.
- Do not introduce unnecessary integer variables.
- Scale the coefficients in the constraint to as small as possible.