Lecture 7: Constraint satisfaction
Linear and integer programming

- Constraint satisfaction
 - Global constraints
 - Local search
 - Tools for SAT and CSP
- Linear and integer programming
 - Introduction

Global Constraints

- Constraint programming systems often offer constraints with special purpose constraint propagation (filtering) algorithms. Such a constraint can typically be seen as an encapsulation of a set of simpler constraints and is called a global constraint.
- A representative example is the \texttt{alldiff} constraint:

\[
\text{alldiff}(x_1, \ldots, x_n) = \{(d_1, \ldots, d_n) \mid d_i \neq d_j, \text{for } i \neq j\}
\]

Example. A tuple \((a, b, c)\) satisfies \texttt{alldiff}(\(x_1, x_2, x_3\)) but \((a, b, a)\) does not.

- \texttt{alldiff}(\(x_1, \ldots, x_n\)) can be seen as an encapsulation of a set of binary constraints \(x_i \neq x_j, 1 \leq i < j \leq n\).

Global Constraints: Propagation

- Consider the case of \texttt{alldiff}: For \texttt{alldiff}(\(x_1, \ldots, x_n\)) there is an efficient hyper-arc consistency algorithm which allows more powerful propagation than hyper-arc consistency for the set of corresponding “\(\neq\)” constraints.
- Example. Consider variables \(x_1, x_2, x_3\) with domains \(D_1 = \{a, b, c\}, D_2 = \{a, b\}, D_3 = \{a, b\}\).
 - Now \texttt{alldiff}(\(x_1, x_2, x_3\)) is not hyper-arc consistent and the projection rule removes values \(a, b\) from the domain of \(x_1\).
 - However, the corresponding set of constraints \(x_1 \neq x_2, x_1 \neq x_3, x_2 \neq x_3\) is hyper-arc consistent and the projection rule is not able to remove any values.
Global Constraints: Other Examples

- When solving a CSP problem often a special purpose (global) constraint and an efficient propagation algorithm for it needs to be developed to make the solution technique more efficient.
- There is a wide range of such global constraints:
 - cumulative
 - diff-n
 - cycle
 - sort
 - alldifferent and permutation
 - symmetric alldifferent
 - global cardinality (with cost)
 - sequence
 - stretch
 - minimum global distance
 - k-diff
 - number of distinct values
 - ...

CSP: Local Search

- A tabu search algorithm by Galiner and Hao is one of the best performing general local search algorithms for CSPs.
 - TS-GH algorithm (Galiner and Hao, 1997):
 - Initialize each variable by selecting a value uniformly at random from its domain.
 - In each local step select among all variable-value pairs (x', v') such that x' appears in a constraint that is unsatisfied under the current assignment and v' is in the domain of v. A pair (x, v) that leads to a maximal decrease in the number of violated constraints.
 - If there are multiple such pairs, one of them is chosen uniformly at random.
 - After changing the assignment of x to v, the pair (x, v) is declared tabu for tt steps.

SAT: Local Search

- Local search methods have difficulties with structured problem instances.
 - For good performance parameter tuning is essential.
 - (For example in WalkSAT: the noise parameter p and the max_flips parameter.)
 - Finding good parameter values is a non-trivial problem which typically requires substantial experimentation and experience.
 - WalkSAT revised: adding greediness and adaptivity
 - Novelty+ and AdaptiveNovelty+ algorithms

I.N. & P.O. Spring 2006
WalkSAT

function WalkSAT(F, p):
 $t \leftarrow$ initial truth assignment;
 while flips < max_flips do
 if t satisfies F then return t else
 choose a random unsatisfied clause C in F;
 if some variables in C can be flipped without breaking any presently satisfied clauses, then pick one such variable x at random; else:
 with probability p, pick a variable x in C unif. at random;
 with probability $(1 - p)$, do basic GSAT move:
 find a variable x in C whose flipping causes largest decrease in $c(t)$;
 $t \leftarrow (t$ with variable x flipped$)$
 end while;
 return t.

Novelty+

WalkSAT can be made greedier using a history-based variable selection mechanism.

The age of a variable is the number of local search steps since the variable was last flipped.

Novelty algorithm (McAllester et al., 1997):
After choosing an unsatisfiable clause the variable to be flipped is selected as follows:

- If the variable with the highest score does not have minimal age among the variables within the same clause, it is always selected.
- Else it is only selected with probability $1 - p$, where p is a parameter called noise setting.
- Otherwise the variable with the next lower score is selected.
- When sorting variables according to their scores, ties are broken according to decreasing age.

In Novelty+ (Hoos 1998) a random walk step is added:
with probability $1 - wp$ the variable to be flipped is selected according to the Novelty mechanism and in the other cases a random walk step is performed.

Adaptive WalkSat and Adaptive Novelty+

A suitable value for the noise parameter p is crucial for competitive performance of WalkSAT and its variants.

Too low noise settings lead to stagnation behaviour and too high settings to long running times.

Instead of a static setting, a dynamically changing noise setting can be used.

Adaptive WalkSat and Novelty+ (Hoos, 2002):
Two parameters θ and ϕ are given.

- At the beginning the search is maximally greedy ($p = 0$).
- There is a search stagnation if no improvement in the evaluation function value has been observed over the last $m\theta$ search steps where m is the number of clauses in the instance.
- In this situation the noise value is increased by $p := p + (1 - p)\phi$ and if after this the search stagnation continues, p is further increased in the same way.
- If there is an improvement in the evaluation function value, then the noise value is decreased by $p := p - \phi$/2.

Tools for SAT

The development of SAT solvers is strongly driven by SAT competitions (http://www.satcompetition.org/)

There is a wide range of efficient solvers also available in public domain.

See for example http://www.satcompetition.org/ for solvers that ranked well in previous SAT competitions.

SAT2005:
SatELiteGTI, MiniSAT 1.13, zChaff_rand, HaifaSAT, Vallst, March_dl, kcnf-2004, Dew_Satzla, Jerusat 1.31 B, Hsat1, ranov, g2wsat, VW
Tools for CSP

- Constraint programming systems offer a rich set of supported constraint types with efficient propagation algorithms and primitives for implementing search.
- Typically the user needs to program, for example, the search algorithm, splitting technique, and heuristic.
- See, for example, http://4c.ucc.ie/~tw/csplib/links.html for available constraint solvers:
 - CLAIRE, ECLiPse, GNU Prolog, Oz, Sicstus Prolog, ILOG Solver, ...

Linear and Integer Programming

- Linear and Integer Programming can be thought to be a subclass of constraint programming where there are
 - two types of variables: real valued and integer valued
 - only one type of constraint: linear (in)equalities.
- Linear Programming (LP): only real valued variables.
- Integer Programming (IP): only integer variables.
- Mixed Integer Programming (MIP): both integer and real valued variables.

MIP: Basic Concepts

- Let x be a vector of variables $x = (x_1, \ldots, x_n)$.
- Each variable in a set I of variables is required to take integer values while the remaining variables can take any real value.
 - Each variable can have a range represented by vectors $l = (l_1, \ldots, l_n)$ and $u = (u_1, \ldots, u_n)$ such that for all i, $l_i \leq x_i \leq u_i$, that is, $l \leq x \leq u$.
- A linear constraint on the variables is of the form
 $$\sum_j a_j x_j = b$$
 or
 $$ax = b$$
 where a is a vector coefficients $a = (a_1, \ldots, a_n)$ and b is a scalar.
 - The relation symbol `=' can also be `≤' or `≥'.
- A linear objective function is represented by a vector of coefficients $c = (c_1, \ldots, c_n)$ with the objective of minimizing (or maximizing) $\sum_j c_j x_j = cx$.

MIP: Basic Concepts

- A (mixed) integer program consists of a single linear objective and a set of constraints.
- If we create a matrix $A = (a_{ij})$ where a_{ij} is the coefficient for variable j in the ith constraint, then a MIP can be written as:

$$\min cx$$
$$s.t. \quad Ax = b$$
$$l \leq x \leq u$$
$$x_j \text{ is integer for all } j \in I$$

An Example. SET COVER

INSTANCE: A family of sets $F = \{S_1, \ldots, S_n\}$ of subsets of a finite set U.

QUESTION: Find an I-cover of U (a set of I sets from F whose union is U) with the smallest number I of sets.

- For each set S_i an integer variable x_i such that $0 \leq x_i \leq 1$
- For each element u of U a constraint

$$a_1 x_1 + \cdots + a_n x_n \geq 1$$

where the coefficient $a_i = 1$ if $u \in S_i$ and otherwise $a_i = 0$.

- Objective: $\min x_1 + \cdots + x_n$

Modelling: Logical Constraints

- Use binary integer variables ($0 \leq x \leq 1$).
- Disjunction: x_3 has the value of the boolean expression $x_1 \lor x_2$:

$$x_3 \geq x_1$$
$$x_3 \geq x_2$$
$$x_3 \leq x_1 + x_2$$

- Conjunction: x_3 has the value of the boolean expression $x_1 \land x_2$:

$$x_3 \leq x_1$$
$$x_3 \leq x_2$$
$$x_3 \geq x_1 + x_2 - 1$$
Modelling SAT

- Given a SAT instance F in CNF, introduce
- for each Boolean variable in F, a binary integer variable x ($0 \leq x \leq 1$).
- for each clause $l_i \lor \cdots \lor l_n$ in F, a constraint
 \[a_1 x_1 + \cdots + a_n x_n \geq 1 - m \]
 where the coefficient $a_i = 1$ if the literal l_i is positive and otherwise $a_i = -1$ and m is the number of negative literals in the clause.
- Then F is satisfiable iff the corresponding set of constraints has a feasible solution.