T-79.4201 Search Problems and Algorithms

Lecture 5: Constraint satisfaction: formalisms
and modelling

» When solving a search problem the most efficient solution
methods are typically based on special purpose algorithms.

» In Lectures 3 and 4 important approaches to developing such
algorithms have been discussed.

» However, developing a special purpose algorithm for a given
problem requires typically a substantial amount of expertise and
considerable resources.

» Another approach is to exploit an efficient algorithm already
developed for some problem through reductions.
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Constraint Satisfaction Problems (CSPs)

» Given variables Y :=vyj,...,yx and domains Dy, ... Dy,
aconstraint C onY is a subset of Dy X --- X Dy .

» If Kk =1, the constraint is called unary and if k = 2, binary.

» Example. Consider variables y;,y» both having the domain
Di = {0,1,2} and a binary constraint NotEq on y;,y, such that
NotEq = {(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}.

» For variables x,y, we denote this constraint modelling
non-equality by x #y.

» Given variables Xy, ...,X, and domains Dq,...Dy,
a constraint satisfaction problem (CSP):

(C;xq € Dy,...,%Xn € Dp)

where C is a set of constraints each on a subsequence of
X1,...,Xn.
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Exploiting Reductions

» Given an efficient algorithm for a problem A we can solve a
problem B by developing a reduction from B to A.
Algorithm for B:
Reduction R:(xg Algorithm
R for A

input x —> = Answer

» Constraint satisfaction problems (CSPs) offer attractive target
problems to be used in this way:

» CSPs provide a flexible framework to develop reductions, i.e.,
encodings of problems as CSPs such that a solution to the original
problem can be easily extracted from a solution of the CSP
encoding the problem.

» Constraint programming offers tools to build efficient algorithms for
solving CSPs for a wide range of constraints.

» There are efficient software packages that can be directly used for
solving interesting classes of constraints.
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CSPs I

» For a constraint C on x;, ..., X,, an n-tuple
(di,...,dn) € Dy X --- X Dy, satisfies C if (di,,...,d; ) €C

» Example. An n-tuple (1,2,...,n) satisfies the constraint NotEq
on X1, X, because (1,2) € NotEq but the n-tuple (1,1,...,n) does
not as (1,1) ¢ NotEq.

» A solutiontoa CSP (C,x; € Dy,...,X, € Dp) is an n-tuple
(dq,...,dn) € Dy X --- X Dy that satisfies each constraint C € C.

Example. Consider a CSP

({x1 # X2,%1 # X3,X2 # X3},X1 € {0,1,2},%2 € {0,1,2},x3 € {0,1,2})
The 3-tuple (0,1,2) is a solution to the CSP as it satisfies all the
constraints but (0,1, 1) is not because it does not satisfy the constraint

X2 #Xg.
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Example. Coloring problem
Given a graph G, the coloring problem can be encoded as a CSP as
follows.
» For each node v; in the graph introduce a variable V; with the
domain {1,...,n} where n is the number of available colors.
» For each edge (v, v;) in the graph introduce a constraint V; # V;.

» This is a reduction of the coloring problem to a CSP because the
solutions to the CSP correspond exactly to the solutions of the
coloring problem:
atuple (ty,...,ty) satisfying all the constraints gives a valid
coloring of the graph where node v; is colored with color t;.
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N Queens
Problem: Place n queens on a n x n chess board so that they do not
attack each other.
» Variables: X,...,Xn (Xi gives the position of the queen on ith
column)
» Domains: [1..n]
» Constraints: fori € [L.n—1] andj € [i +1..n]:
(i) xi # X; (rows)
(i) xi —xj # i —] (SW-NE diagonals)
(iii) xi —x; # j —i (NW-SE diagonals)
» When n = 10, the tuple (3,10,7,4,1,5,2,9,6,8) gives a solution
to the problem.
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Example: SEND + MORE = MONEY

» Replace each letter by a different digit so that

SEND 9567
+ MORE + 1085
MONEY 10652

is a correct sum.
» Variables: S,E,N,D,M,O, R, Y
» Domains: [1..9] for S, M and [0..9] for E, N, D, O, R, Y

» Constraints:

The unique solution.

1000-S+100-E+10-N+D
+1000-M +100-O+10-R+E
=10000-M +1000-O+100-N+10-E+Y

x #y for every pair of variables x,y in{S, E, N, D, M, O, R, Y}.

> Itis easy to check that the tuple (9,5,6,7,1,0,8,2) satisfies the
constraints, i.e., is a solution to the problem.
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Constrained Optimization Problems

» Given: aCSP P := (C;x; € Dy,...,Xn € Dy) and a function
obj : Sol — R

» (P,obj) is a constrained optimization problem (COP) where the
task is to find a solution d to P for which the value obj(d) is
optimal.

» Example. KNAPSACK: a knapsack of a fixed volume and n
objects, each with a volume and a value. Find a collection of
these objects with maximal total value that fits in the knapsack.

» Representation as a COP:
Given: knapsack volume v and n objects with volumes a4, ..., a,
and values by, ..., by.
Variables: xi,...,X,
Domains: {0,1}
Constraint: i, a;-x <V,
Objective function: 3, by - X;.
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Solving CSPs

» Constraints have varying computational properties.

» For some classes of constraints there are efficient special
purpose algorithms (domain specific methods/constraint solvers).
Examples

» Linear equations
» Linear programming
» Unification
» For others general methods consisting of
» constraint propagation algorithms and
» search methods
must be used.

» Different encodings of a problem as a CSP utilizing different sets
of constraints can have substantial different computational
properties.

» However, it is not obvious which encodings lead to the best
computational performance.
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Boolean Constraints

» A Boolean constraint C on variables Xy, ..., X, with the domain
{true ,false } can be seen as a Boolean function
fc : {true ,false }" — {true ,false } such that a tuple (ty,...,tn)
satisfies the constraint C iff fc (t1,...,ty) = true.

» Typically such functions are represented as propositional
formulas.

» Solution methods for Boolean constraints exploit the structure of
the representation of the constraints as formulas.

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

Constraints

» In the course we consider more carefully two classes of
constraints: linear constraints and Boolean constraints.

» Linear constraints (Lectures 7-9) are an example of a class of
constraints which has efficient special purpose algorithms.

» Now we consider Boolean constraints as an example of a class
for which we need to use general methods based on propagation
and search.

» However, boolean constraints are interesting because

» highly efficient general purpose methods are available for solving
Boolean constraints;

» they provide a flexible framework for encoding (modelling) where it
is possible to use combinations of constraints (with efficient
support by solution techniques).
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Propositional formulas

» Syntax (what are well-formed propositional formulas):
Boolean variables (atoms) X = {xy,Xp,...}
Boolean connectives V, A\, —

» The set of (propositional) formulas is the smallest set such that all
Boolean variables are formulas and if ¢, and @, are formulas, so
are @1, (1 A @), and (@1 V ).

For example, ((x1 V x2) A —X3) is a formula but ((x1 V x2)—x3) is
not.

> A formula of the form x; or —; is called a literal where x; is a
Boolean variable.

» We employ usual shorthands:
G— @ Ve
O o @ (O @) A (P2 V )
QO (~PLAG2) V(P A—G)
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Semantics

» Atomic proposition (Boolean variables) are either true or false
and this induces a truth value for any formula as follows.

» A truth assignment T is mapping from a finite subset X’ C X to
the set of truth values {true ,false }.

» Consider a truth assignment T : X’ — {true , false } which is
appropriate to @, i.e., X (@) C X" where X () be the set of
Boolean variables appearing in @.

> T = @(T satisfies @) is defined inductively as follows:

If @is a variable, then T |= @iff T (@) = true.
If@=—@, thenT EQiff T £ @

fO=@A@, thenT EQ@iff TE@and T =@
fO=@ V@, thenT EQiff TE@or T E@

Example

Let T(x;) =true, T(x,) = false.
Then T = X1 VXz but T B (X1 V —X2) A (—%1 A X2)
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Logical Equivalence

Definition

Formulas @, and @, are equivalent (¢, = @) iff for all truth
assignments T appropriate to both of them, T = @ iff T |= @,.

Example

(V@) =(®Vae)

(A A@)AG)= (@A (@A)
(A @)Ve)= (V) A (@2V3))
(G NAR)= (0 V)

(Ve) =@

» Simplified notation:

(((x2V—X3) VX2) VX4 V (X2 V X5)) is written as

X1V X3V X2 VXgV XV Xs or X1V X3V X2V XqVXsg
» /L, ¢i stands for ¢; V-V y

AL, §; stands for d; A--- APy
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Representing Boolean Functions

» A propositional formula @ with variables Xy, ..., X, expresses a
n-ary Boolean function f if for any n-tuple of truth values
t=(tg,...,t), f(t) =true if T =@and f(t) =false if T £ @
where T(x) =t,i=1,...,n.

Proposition. Any n-ary Boolean function f can be expressed as a
propositional formula @ involving variables xi, ..., Xn.

Example.

» The idea: model the rows of the truth X1 | X2 | f
table giving true as a disjunction of 0|0 |0
conjunctions. 0|1 |1

> Let F be the set of all n-tuples 101
t=(ty,...,ty) with f(t) = true. 1]1]0
For each t, let D; be a conjunction of &=
literals x; if t; = true and —; if (—x1 Ax2) V
tj = false. (X1 A =1%2)

> Let @ = Ve D
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Normal Forms

» Many solvers for Boolean constraints require that the constraints
are represented in a normal form (typically in conjunctive normal
form).

Proposition. Every propositional formula is equivalent to one in
conjunctive (disjunctive) normal form.

CNF: (Ill\/"'\/Ilnl)/\"'/\(lml\/"'\/lmnm)
DNF: (|11/\"'/\|1nl)\/"'\/(|m1/\"'/\'mnm)
where each |; is a literal (Boolean variable or its negation).

A disjunction |; V- - - V|, is called a clause.
A conjunction I; A - -- Aly is called an implicant.
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Normal Form Transformations
CNF/DNF transformation:

1. remove < and —:
a=B ~ (maVvB)A(-BVa) (1)
a—pB ~ -avp (2

2. Push negations in front of Boolean variables:
-0 ~ 3)
—(avpB) ~ —an-B (4
“(aAB) ~ —-av-B (5

3. CNF: move A connectives outside V connectives:
av(Bay) ~ (aVvB)A(avy) (6)
(aAB)VY ~ (avy)A(BVY) ()

DNF: move V connectives outside A connectives:

aA(Bvy) ~ (anB)v(anry) (8)
(@aVB)AY ~ (aAy)V(BAY) (9)
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Boolean Circuits

» Normal forms are often a quite unnatural way of encoding
problems as a propositional formula.

» More natural encodings are obtained using Boolean circuits to
represent the required Boolean functions

» A Boolean circuit C is a 4-tuple (V,E,s,a) where

» (V,E) is an acyclic graph whose
nodes are called gates. The nodes
are divided into three categories:

» output gates (outdegree 0)
> intermediate gates
> input gates (indgree 0)

> s assigns a Boolean function s(g) to
each intermediate and output gate g
of appropriate arity corresponding to
the indegree of the gate.

» (O assigns truth values to some gates.
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Example

Transform (AVB) — (B < C) to CNF.

(AVB) — (B~ C) (1,2)
-(AVB)V((-BVC)A(—-CVB)) (4)
(FAA-B)V((-BVC)A(—CVB)) (7)
(mAV((-BVC)A(—CVB)))A(—-BV((-BVC)A(-CVB))) (6)
((mAV(=BVC))A(-AV(=CVB)))A(-BV((-BVC)A(=CVB))) (6)
((mAV(=-BVC))A(=AV(—-CVB)))A((-BV(-BVC))A(-BV(—CVB)
(-AV-BVC)A(-AV—-CVB)A(-BV-BVC)A(—BV-CVB)

» We can assume that normal forms do not have repeated
clauses/implicants or repeated literals in clauses/implicants
(for example (-BV -BV C) = (—-BVC)).

» Normal form can be exponentially bigger than the original formula
in the worst case.
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Boolean Circuits—Semantics

» For a circuit a truth assignment T : X(C) — {true ,false } gives
a truth assignment to each input gate X (C) of C.

» This defines a truth value T (g) for each gate g inductively if the
gates are ordered topologically in a sequence so that no gate
appears in the sequence before its input gates (this is always
possible because the circuit is acyclic):

» If g € X(C), then the truth assignment T (g) gives the truth value.

» Otherwise T(g) =f(T(g1),...,T(gn)) where (g1,9), ...and
(gn,9) are the edges entering g and f is the Boolean function
s(g) associated to g.
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Circuit Satisfiability Problem

> An interesting computational (search) problem related to circuits
is the circuit satisfiability problem.

» Given a Boolean circuit (V,E,s,0) we say a truth assignment T
satisfies the circuit if it satisfies the constraints q, i.e., for each
gate g for which a gives a truth value, a(g) = T(g) holds.

» CIRCUIT SAT problem: Given a Boolean circuit find a truth
assignment T that satisfies the circuit.

Example. Consider the circuit given on
the right with constraints

a(v4) = false and a(vy) = true.

This circuit has a satisfying truth as-
sighment

T(vq) =false,T(vs) = T(vs) = true.
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Circuits Compute Boolean Functions

» A Boolean circuit with output gate g and variables xi, ..., X
computes an n-ary Boolean function f if for any n-tuple of truth
valuest = (t1,...,t;), f(t) =T(g) where T(x;) =t,i =1,...,n.

» Any n-ary Boolean function f can be computed by a Boolean
circuit involving variables Xy, ..., X;.

» Not every Boolean function can be computed using a concise
circuit.

Theorem

For any n > 2 there is an n-ary Boolean function f such that no
Boolean circuit with % or fewer gates can compute it.

I.N. & P.O. Spring 2006

T-79.4201 Search Problems and Algorithms

Boolean Circuits vs. Propositional Formulas

» For each propositional formulae @, there is a corresponding
Boolean circuit Cgy such that for any T appropriate for both,
T(gg) =true iff T |= @for an output gate g of Cg .

Idea: just introduce a new gate for each subexpression.

(avb)A(—aVb)A
(av—b)A(—aV-b)

» For each Boolean circuit C, there is a corresponding formula @c.

» Notice that Boolean circuits allow shared subexpressions but
formulas do not.
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Boolean Circuits as Equation Systems
A Boolean circuit can be written as a system of equations.
v = and(e,f,g,h)

e =or(a,b)
f =or(b,c)
g =or(a,d)
h=or(c,d)
¢ =not(a)
d = not(b)
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Boolean Modelling

» Propositional formulas/Boolean circuits offer a natural way of
modelling many interesting Boolean functions.

» Example. IF-THEN-ELSE ite(a, b, c) (if a then b else c.).

As a formula:
ite(a,b,c) = (aAb)V(—-aAc)
As a circuit:

i= Ol'(i]_, I2)

iy =and(a,b)

i, =and(az,c)

a; = not(a)

» Given gates a, b, c, ite(a,b,c) can be thought as a shorthand for
a subcircuit given above.

» Inthe bczchaf f tool used in the course ite(a, b, c) is provided as
a primitive gate functions.
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Encoding Problems Using Circuits

» Circuits can be used to encode problems in a structured way.

» Example. Given three bits a, b, c find their values such that
if at least two of them are ones then either a or b is one else a or
c is one.

» We use IF-THEN-ELSE and adder circuits to encode this as a
CIRCUIT SAT problem as follows:
p = ite(02,X,p1)
p1 =or(a,c)
% full adder; gate o, omtted
oz =or(l,r)
| = and(a,b)
r = and(c,x)
x = xor(a,b)
» Now each satisfying truth assignment for the circuit with
a(p) = true gives a solution to the problem.
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Example

Binary adder. Given input bits a, b and ¢

compute output bits 0,0, which give the sum of a, b, and c in binary.
As a formula:

o1 =((a®b)®c)
o, =(aAb)V(cA(a®b)

As a circuit:
01 = xor(x,c)
o, =or(l,r)
| = and(a,b)
r = and(c,x)
x = xor(a,b)
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Example. Reachability

Given a graph G = ({1,...,n},E), constructs a circuit R(G) such that
R(G) is satisfiable iff there is a path from 1 to n in G.

» The gates of R(G) are of the form
gik with1 <i,j<nand0<k <n
hijk with 1 <i,j,k <n

> giji is true: there is a path in G from i to j not using any
intermediate node bigger than k.

> hji is true: there is a path in G from i to j not using any
intermediate node bigger than k but using k.
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Example—contd
R(G) is the following circuit:

|

>

For k =0, gjk is an input gate.

Fork =1,2,...,n:

hix = and(gi(k—1), Ikj(k—1))

9ik = or(gij(k—1), hik)

d1nn is the output gate of R(G).

Constraints O:

For the output gate: 0(ginn) = true

For the input gates: a(gjo) = true ifi =j or (i,j) is an edge in G
else a(gjjo) = false.
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Example. Reachability with choices

|

>

Consider now a more challenging (search problem).

For odd numbered nodes i (but not for 1 and n) there are two
alternative edges either to the node i +1 or to i — 1 and for the
other nodes the edges are given as in G.

Find the set of edges for the odd nodes such that there is a path
from 1 ton.

To solve this problem we can use the circuit R(G) and modify it
for each odd node i as follows:

» add a subcircuit x; = xor(gii+1,0,9ii—1,0) and set a(x;) = true;
» remove constraints 0(git+1,0) =t and a(gii—1,0) =t'.

Now the modified R(G) is satisfiable iff there is a set of edges for
the odd nodes such that there is a path from 1 to n.

Moreover, the set of edges is given by the gates gii—1.0,0i,+1,0
true in a satisfying truth assignment.
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Example—contd

>

Because of the constraints O on input gates there is at most one
possible truth assignment T.

It can be shown by induction on k = 0,1,...,n that in this
assignment the truth values of the gates correspond to their given
intuitive readings.

From this it follows:

R(G) is satisfiable iff T (ginn) = true in the truth assignment iff
there is a path from 1 to n in G without any intermediate nodes
bigger than n iff there is a path from 1 to nin G.
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From Circuits to CNF

>

>

>

>

Translating Boolean Circuits to an equivalent CNF formula can
lead to exponential blow-up in the size of the formula.

Often exact equivalence is not necessary but auxiliary variables
can be used as long as at least satisfiability is preserved.

Then a linear size CNF representation can be obtained using
co-called Tseitin translation where given a Boolean circuit C the
corresponding CNF formula is obtained as follows

» anew variable is introduced to each gate of the circuit,

» the set of clauses in the normal form consist of the gate equation
is written in a clausal form for each intermediate and output gate
and the corresponding literal for each gate g with a constraint
a(g) =t.

This transformation preserves satisfiability and even truth
assignments in the following sense:

if C is a Boolean circuit and X its Tseitin translation, then for
every truth assignment T of C there is a satisfying truth
assignment T’ of X which agrees with T and vice versa.
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From Circuits to CNF I
Example.

Gate equations

for non-input gates:
V1 < (V2 N V3)

Vo < (V4 V Vg \/VG)
V3 (V5 — Ve)

(—|V1 \/Vz) N (—|V1 \/V3) AN (Vj_ V =V V _|V3)/\
(V2 V —|V4) VAN (V2 \Y —|V5) N (V2 \Y _‘Ve) AN (—‘Vz VVg VsV V5)/\
(V3 Vs VVe)A(VaV sV V) A (V3 VsV —vg) A(—va V —vs V vg)A
(—v4) (for the constraint a(v,4) = false)
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