1. Encode the SET COVER problem as a constraint satisfaction problem (CSP).

2. Encode the TSP optimization problem as a constrained optimization problem.

3. Give a propositional formula that express the Boolean function that the circuit below computes.

4. Give a propositional formula in CNF that expresses the Boolean function
 a) \(\text{odd}(x_1, x_2, x_3) \) which evaluates to true iff an odd number of \(x_1, x_2, x_3 \) have the value true;
 b) \(\text{atleast}_2(x_1, \ldots, x_n) \) which evaluates to true iff the number of \(x_1, \ldots, x_n \) having the value true is at least 2;
 c) \(\text{atmost}_{n-1}(x_1, \ldots, x_n) \) which evaluates to true iff the number of \(x_1, \ldots, x_n \) having the value true is at most \(n - 1 \);

5. Give a Boolean circuit that performs lexicographic comparison of two \(n \) bit strings, i.e., construct a circuit that has input gates \(x_1, \ldots, x_n, y_1, \ldots, y_n \) and its output gate has the value true in a truth assignment \(T \) iff the bit string \(b_1 b_2 \cdots b_n \) given as input for the gates \(x_1, \ldots, x_n \) in \(T \) is lexicographically properly greater than \(c_1 c_2 \cdots c_n \) given as input for the gates \(y_1, \ldots, y_n \).

 Here when a bit string \(b_1 b_2 \cdots b_n \) is given as input for the gates \(x_1, \ldots, x_n \) in a truth assignment \(T \) it means that for \(i = 1, \ldots, n \), if \(b_i = 1 \) then \(T(x_i) = \text{true} \) else \(T(x_i) = \text{false} \) and similarly for the input gates \(y_1, \ldots, y_n \).

 Hint: For example, the bit string 01000 is lexicographically properly greater than 00111.