12 Complexity of Search

- The “No Free Lunch” Theorem
- Combinatorial Phase Transitions
- Complexity of Local Search

12.1 The “No Free Lunch” Theorem

- Wolpert & Macready 1997
- Basic content: All optimisation methods are equally good, when averaged over uniform distribution of objective functions.
- Alternative view: Any nontrivial optimisation method must be based on assumptions about the space of relevant objective functions. [However this is very difficult to make explicit and hardly any results in this direction exist.]
- Corollary: one cannot say, unqualified, that ACO methods are “better” than GA’s, or that Simulated Annealing is “better” than simple Iterated Local Search. [Moreover as of now there are no results characterising some nontrivial class of functions f on which some interesting method a would have an advantage over, say, random sampling of the search space.]

The NFL theorem: definitions (1/4)

- Consider family \mathcal{F} of all possible objective functions mapping finite search space X to finite value space Y.
- A sample d from the search space is an ordered sequence of distinct points from X, together with some associated cost values from Y:
 $$d = \{(d^x(1), d^y(1)), \ldots, (d^x(m), d^y(m))\}.$$
 Here m is the size of the sample. A sample of size m is also denoted by d_m, and its projections to just the x- and y-values by d^x_m and d^y_m, respectively.
- The set of all samples of size m is thus $\mathcal{D}_m = (X \times Y)^m$, and the set of all samples of arbitrary size is $\mathcal{D} = \bigcup_m \mathcal{D}_m$.

The NFL theorem: definitions (2/4)

- An algorithm is any function a mapping samples to new points in the search space. Thus:
 $$a : \mathcal{D} \rightarrow X, \quad a(d) \notin d^x.$$
 Note 1: The assumption $a(d) \notin d^x$ is made to simplify the performance comparison of algorithms; i.e. one only takes into account distinct function evaluations. Not all algorithms naturally adhere to this constraint (e.g. SA, ILS), but without it analysis is difficult.
- Note 2: The algorithm may in general be stochastic, i.e. a given sample $d \in \mathcal{D}$ may determine only a distribution over the points $x \in X - d^x$.
The NFL theorem: definitions (3/4)

- A **performance measure** is any mapping \(\Phi \) from cost value sequences to real numbers (e.g. minimum, maximum, average). Thus:

\[
\Phi : \gamma^* \rightarrow \mathbb{R},
\]

where \(\gamma^* = \bigcup_m \gamma^m \):

The NFL theorem: statement

Theorem

For any value sequence \(d_m^f \) and any two algorithms \(a_1 \) and \(a_2 \):

\[
\sum_{f \in \mathcal{F}} P(d_m^f \mid f, m, a_1) = \sum_{f \in \mathcal{F}} P(d_m^f \mid f, m, a_2).
\]

The NFL theorem: corollaries

Corollary

[1] Assume the uniform distribution of functions over \(\mathcal{F} \),

\[
P(f) = \frac{1}{|\mathcal{F}|} = \frac{1}{|\gamma^{\mathbb{R}}|^{|\mathbb{X}|}}.
\]

Then for any value sequence \(d_m^f \in \gamma^m \) and any two algorithms \(a_1 \) and \(a_2 \):

\[
P(d_m^f \mid m, a_1) = P(d_m^f \mid m, a_2).
\]

Corollary

[2] Assume the uniform distribution of functions over \(\mathcal{F} \). Then the expected value of any performance measure \(\Phi \) over value samples of size \(m \),

\[
E(\Phi(d_m^f) \mid m, a) = \sum_{d_m^f \in \gamma^m} \Phi(d_m^f)P(d_m^f \mid m, a),
\]

is independent of the algorithm \(a \) used.
12.2 Combinatorial Phase Transitions

▶ “Where the Really Hard Problems Are” (Cheeseman et al. 1991)

▶ Many NP-complete problems can be solved in polynomial time “on average” or “with high probability” for reasonable-looking distributions of problem instances. E.g. Satisfiability in time $O(n^2)$ (Goldberg et al. 1982), Graph Colouring in time $O(n^2)$ (Grimmett & McDiarmid 1975, Turner 1984).

▶ Where, then, are the (presumably) exponentially hard instances of these problems located? Could one tell ahead of time whether a given instance is likely to be hard?

Hard instances for 3-SAT (1/4)

▶ Mitchell, Selman & Levesque, AAAI-92

▶ Experiments on the behaviour of the DPLL procedure on randomly generated 3-cnf Boolean formulas.

▶ Distribution of test formulas:
 ▶ $n =$ number of variables
 ▶ $m = an$ randomly generated clauses of 3 literals, $2 \leq \alpha \leq 8$

▶ For sets of 500 formulas with $n = 20/40/50$ and various α, Mitchell et al. plotted the median number of recursive DPLL calls required for solution.

Hard instances for 3-SAT (2/4)

▶ Mitchell, Selman & Levesque, AAAI-92

▶ Experiments on the behaviour of the DPLL procedure on randomly generated 3-cnf Boolean formulas.

▶ Distribution of test formulas:
 ▶ $n =$ number of variables
 ▶ $m = an$ randomly generated clauses of 3 literals, $2 \leq \alpha \leq 8$

▶ For sets of 500 formulas with $n = 20/40/50$ and various α, Mitchell et al. plotted the median number of recursive DPLL calls required for solution.

Hard instances for 3-SAT (3/4)

▶ Mitchell, Selman & Levesque, AAAI-92

▶ Experiments on the behaviour of the DPLL procedure on randomly generated 3-cnf Boolean formulas.

▶ Distribution of test formulas:
 ▶ $n =$ number of variables
 ▶ $m = an$ randomly generated clauses of 3 literals, $2 \leq \alpha \leq 8$

▶ For sets of 500 formulas with $n = 20/40/50$ and various α, Mitchell et al. plotted the median number of recursive DPLL calls required for solution.

Hard instances for 3-SAT (4/4)

▶ Mitchell, Selman & Levesque, AAAI-92

▶ Experiments on the behaviour of the DPLL procedure on randomly generated 3-cnf Boolean formulas.

▶ Distribution of test formulas:
 ▶ $n =$ number of variables
 ▶ $m = an$ randomly generated clauses of 3 literals, $2 \leq \alpha \leq 8$

▶ For sets of 500 formulas with $n = 20/40/50$ and various α, Mitchell et al. plotted the median number of recursive DPLL calls required for solution.

Results:

▶ A distinct peak in median running times at about clauses-to-variables ratio $\alpha \approx 4.5$.

▶ Peak gets more pronounced for increasing $n \Rightarrow$ well-defined “delta” distribution for infinite n?

Question: Is the connection of the running time peak and the satifiability threshold a characteristic of the DPLL algorithm, or a (more or less) algorithm independent “universal” feature?
The satisfiability transition (1/2)

Mitchell et al. (1992): The “50% satisfiable” point or “satisfiability threshold” for 3-SAT seems to be located at $\alpha \approx 4.25$ for large n.

The satisfiability transition (2/2)

Kirkpatrick & Selman (1994):

- Similar experiments as above for k-SAT, $k = 2, \ldots, 6$, 10000 formulas per data point.
- The “satisfiability threshold” α_c shifts quickly to larger values of α for increasing k.

Statistical mechanics of k-SAT (1/4)

Kirkpatrick & Selman, Science 1994

A “spin glass” model of a k-cnf formula:

- variables $x_i \sim$ spins with states ± 1
- clauses $c \sim k$-wise interactions between spins
- truth assignment $\sigma \sim$ state of spin system
- Hamiltonian $H(\sigma) \sim$ number of clauses unsatisfied by σ
- $\alpha_c \sim$ critical “interaction density” point for “phase transition” from “satisfiable phase” to “unsatisfiable phase”

Statistical mechanics of k-SAT (2/4)

Estimates of α_c for various values of k via “annealing approximation”, “replica theory”, and observation:

<table>
<thead>
<tr>
<th>k</th>
<th>α_{ann}</th>
<th>α_{rep}</th>
<th>α_{obs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.41</td>
<td>1.38</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>5.19</td>
<td>4.25</td>
<td>4.17 \pm 0.03</td>
</tr>
<tr>
<td>4</td>
<td>10.74</td>
<td>9.58</td>
<td>9.75 \pm 0.05</td>
</tr>
<tr>
<td>5</td>
<td>21.83</td>
<td>20.6</td>
<td>20.9 \pm 0.1</td>
</tr>
<tr>
<td>6</td>
<td>44.01</td>
<td>42.8</td>
<td>43.2 \pm 0.2</td>
</tr>
</tbody>
</table>
Statistical mechanics of k-SAT (3/4)

The “annealing approximation” means simply assuming that the different clauses are satisfied independently. This leads to the following estimate:

- Probability that given clause c is satisfied by random σ:
 \[p_k = 1 - 2^{-k}. \]
- Probability that random σ satisfies all $m = \alpha n$ clauses assuming independence: $p_k^{\alpha n}$.
- For large n, $S_k^{\alpha}(\alpha)$ falls rapidly from 2^n to 0 near a critical value $\alpha = \alpha_c$. Where is α_c?
- One approach: solve for $S_k^{\alpha}(\alpha) = 1$.
 \[S_k^{\alpha}(\alpha) = 1 \iff 2p_k^{\alpha} = 1 \]
 \[\iff \alpha = -\frac{1}{\log_2 p_k} = -\frac{\ln 2}{\ln(1 - 2^{-k})} \approx \frac{\ln 2}{2^{-k}} = (\ln 2) \cdot 2^k \]

12.3 Complexity of Local Search

- Good experiences for 3-SAT in the satisfiable region $\alpha < \alpha_c$: e.g. GSAT (Selman et al. 1992), WalkSAT (Selman et al. 1996).
- Focusing the search on unsatisfied clauses seems to be an important technique: in the (unsystematic) experiments in Selman et al. (1996), WalkSAT (focused) outperforms NoisyGSAT (unfocused) by several orders of magnitude.

Statistical mechanics of k-SAT (4/4)

It is in fact known that:

- A sharp satisfiability threshold α_c exists for all $k \geq 2$ (Friedgut 1999).
- For $k = 2$, $\alpha_c = 1$ (Goerdt 1982, Chvátal & Reed 1982). Note that 2-SAT $\in \mathbb{P}$.
- For $k = 3$, $3.145 < \alpha_c < 4.506$ (lower bound due to Achlioptas 2000, upper bound to Dubois et al. 1999).
- Current best empirical estimate for $k = 3$: $\alpha_c \approx 4.267$ (Braunstein et al. 2002).
- For large k, $\alpha_c \sim (\ln 2) \cdot 2^k$ (Achlioptas & Moore 2002).

Dynamics of local search

A WalkSAT run with $p = 1$ (“focused random walk”) on a randomly generated 3-SAT instance, $\alpha = 3$, $n = 500$: evolution in the fraction of unsatisfied clauses (Semerjian & Monasson 2003).
Some recent results and conjectures

- Barthel, Hartmann & Weigt (2003), Semerjian & Monasson (2003): WalkSAT with \(p = 1 \) has a “dynamical phase transition” at \(\alpha_{\text{dyn}} \approx 2.7 - 2.8 \). When \(\alpha < \alpha_{\text{dyn}} \), satisfying assignments are found in linear time per variable (i.e. in a total of \(cn \) “flips”), when \(\alpha > \alpha_{\text{dyn}} \) exponential time is required.

- Explanation: for \(\alpha > \alpha_{\text{dyn}} \) the search equilibrates at a nonzero energy level, and can only escape to a ground state through a large enough random fluctuation.

- Conjecture: all local search algorithms will have difficulties beyond the so called “clustering transition” at \(\alpha \approx 3.92 - 3.93 \) (Mézard, Monasson, Weigt et al.)

Some WalkSAT experiments

For \(p > 1 \), the \(\alpha_{\text{dyn}} \) barrier for linear solution times can be broken (Aurell & Kirkpatrick 2004; Seitz, Alava & Orponen 2005).

Normalised (flips/n) solution times for finding satisfying assignments using WalkSAT, \(\alpha = 3.8 \ldots 4.3 \).

Left: complete data; right: medians and quartiles.

Data suggest linear solution times for \(\alpha \gg \alpha_{\text{dyn}} \approx 2.7 \).

WalkSAT optimal noise level?

Normalised solution times for WalkSAT with \(p = 0.50 \ldots 0.60 \), \(\alpha = 4.10 \ldots 4.22 \).
WalkSAT sensitivity to noise

Cumulative solution time distributions for WalkSAT at $\alpha = 4.20$ with $p = 0.55$ and $p = 0.57$.

RRT applied to random 3-SAT

- Similar results as for WalkSAT are obtained with the Record-to-Record Travel algorithm.
- In applying RRT to SAT, $E(s) =$ number of clauses unsatisfied by truth assignment s. Single-variable flip neighbourhoods.
- **Focusing**: flipped variables chosen from unsatisfied clauses. (Precisely: one unsatisfied clause is chosen at random, and from there a variable at random.) \Rightarrow FRRT = focused RRT.

FRRT experiments (3-SAT)

Normalised solution times for FRRT, $\alpha = 3.8 \ldots 4.3$.

Left: complete data; right: medians and quartiles.

FRRT linear scaling (1/2)

Cumulative solution time distributions for FRRT with $d = 9$.
FRRT linear scaling (2/2)

Cumulative solution time distributions for FRRT with $d = 7$.

Focused search as a contact process
Focused search as a contact process