Lecture 5: Constraint satisfaction: formalisms and modelling

- When solving a search problem the most efficient solution methods are typically based on special purpose algorithms.
- In Lectures 3 and 4 important approaches to developing such algorithms have been discussed.
- However, developing a special purpose algorithm for a given problem requires typically a substantial amount of expertise and considerable resources.
- Another approach is to exploit an efficient algorithm already developed for some problem through reductions.

Constraints

- Given variables \(Y := y_1, \ldots, y_k \) and domains \(D_1, \ldots, D_k \), a constraint \(C \) on \(Y \) is a subset of \(D_1 \times \cdots \times D_k \).
- If \(k = 1 \), the constraint is called unary and if \(k = 2 \), binary.

Example. Consider variables \(y_1, y_2 \) both having the domain \(D_i = \{0, 1, 2\} \). Then

\[
\text{NotEq} = \{(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)\}
\]

can be taken as a binary constraint on \(y_1, y_2 \) and then we denote it by \(\text{NotEq}(y_1, y_2) \) and if it is on \(y_2, y_1 \), then by \(\text{NotEq}(y_2, y_1) \).

- In what follows we use a shorthand notation for constraints by giving directly the condition on the variables when it is clear how to interpret the condition on the domain elements.
- Hence, \(\text{cond}(y_1, \ldots, y_k) \) on variables \(y_1, \ldots, y_k \) with domains \(D_1, \ldots, D_k \) denotes the constraint

\[
\{(d_1, \ldots, d_k) \mid d_i \in D_i \text{ for } i = 1, \ldots, k \text{ and } \text{cond}(d_1, \ldots, d_k) \text{ holds}\}
\]
Constraint Satisfaction Problems (CSPs)

- Given variables x_1, \ldots, x_n and domains D_1, \ldots, D_n,
a constraint satisfaction problem (CSP):
 \[
 \langle C; x_1 \in D_1, \ldots, x_n \in D_n \rangle
 \]

 where C is a set of constraints each on a subsequence of x_1, \ldots, x_n.

Example

\[
\langle \{ \text{NotEq}(x_1, x_2), \text{NotEq}(x_1, x_3), \text{NotEq}(x_2, x_3) \}, x_1 \in \{0, 1, 2\}, x_2 \in \{0, 1, 2\}, x_3 \in \{0, 1, 2\} \rangle
\]

is a CSP. We often use shorthands for the constrains and write

\[
\langle \{ x_1 \neq x_2, x_1 \neq x_3, x_2 \neq x_3 \}, x_1 \in \{0, 1, 2\}, x_2 \in \{0, 1, 2\}, x_3 \in \{0, 1, 2\} \rangle
\]

Example. Graph coloring problem

Given a graph G, the coloring problem can be encoded as a CSP as follows.

- For each node v_i in the graph introduce a variable V_i with the domain \(\{1, \ldots, n\} \) where n is the number of available colors.
- For each edge (v_i, v_j) in the graph introduce a constraint $V_i \neq V_j$.
- This is a reduction of the coloring problem to a CSP because the solutions to the CSP correspond exactly to the solutions of the coloring problem:
a tuple (t_1, \ldots, t_n) satisfying all the constraints gives a valid coloring of the graph where node v_i is colored with color t_i.

Example: SEND + MORE = MONEY

- Replace each letter by a different digit so that

 \[
 \begin{align*}
 \text{SEND} & \quad 9567 \\
 + \text{MORE} & \quad + 1085 \\
 \text{MONEY} & \quad 10652
 \end{align*}
 \]

 is a correct sum. The unique solution.

- Variables: S, E, N, D, M, O, R, Y
- Domains: [1..9] for S, M and [0..9] for E, N, D, O, R, Y
- Constraints:

 \[
 \begin{align*}
 1000 \cdot S + 100 \cdot E + 10 \cdot N + D \\
 + 1000 \cdot M + 100 \cdot O + 10 \cdot R + E \\
 = 10000 \cdot M + 1000 \cdot O + 100 \cdot N + 10 \cdot E + Y
 \end{align*}
 \]

 $x \neq y$ for every pair of variables x, y in \{S, E, N, D, M, O, R, Y\}.

- It is easy to check that the tuple (9, 5, 6, 7, 1, 0, 8, 2) satisfies the constraints, i.e., is a solution to the problem.
N Queens

Problem: Place \(n \) queens on a \(n \times n \) chess board so that they do not attack each other.

- Variables: \(x_1, \ldots, x_n \) (\(x_i \) gives the position of the queen on \(i \)th column)
- Domains: \([1..n]\) for each \(x_i, i = 1, \ldots, n \)
- Constraints: for \(i \in [1..n−1] \) and \(j \in [i+1..n] \):
 1. \(x_i \neq x_j \) (rows)
 2. \(x_i − x_j \neq i − j \) (SW-NE diagonals)
 3. \(x_i − x_j \neq j − i \) (NW-SE diagonals)
- When \(n = 10 \), the \(n \)-tuple \((3,10,7,4,1,5,2,9,6,8)\) gives a solution to the problem.

Constrained Optimization Problems

- Given: a CSP \(P := \langle C; x_1 \in D_1, \ldots, x_n \in D_n \rangle \) and a function \(\text{obj} : \text{Sol} \to \mathbb{R} \)
- \((P, \text{obj}) \) is a constrained optimization problem (COP) where the task is to find a solution \(d \) to \(P \) for which the value \(\text{obj}(d) \) is optimal.
- **Example.** KNAPSACK: a knapsack of a fixed volume and \(n \) objects, each with a volume and a value. Find a collection of these objects with maximal total value that fits in the knapsack.

Solving CSPs

- Constraints have varying computational properties.
- For some classes of constraints there are efficient special purpose algorithms (domain specific methods/constraint solvers).
- **Examples**
 - Linear equations
 - Linear programming
 - Unification
- For others general methods consisting of
 - constraint propagation algorithms and
 - search methods
 must be used.
- Different encodings of a problem as a CSP utilizing different sets of constraints can have substantial different computational properties.
- However, it is not obvious which encodings lead to the best computational performance.

Constraints

- In the course we consider more carefully two classes of constraints: linear constraints and Boolean constraints.
- Linear constraints (Lectures 7–9) are an example of a class of constraints which has efficient special purpose algorithms.
- Now we consider Boolean constraints as an example of a class for which we need to use general methods based on propagation and search.
- However, boolean constraints are interesting because
 - highly efficient general purpose methods are available for solving Boolean constraints;
 - they provide a flexible framework for encoding (modelling) where it is possible to use combinations of constraints (with efficient support by solution techniques).
Boolean Constraints

- A Boolean constraint \(C \) on variables \(x_1, \ldots, x_n \) with the domain \(\{ \text{true, false} \} \) can be seen as a Boolean function \(f_C : \{ \text{true, false} \}^n \rightarrow \{ \text{true, false} \} \) such that a tuple \((t_1, \ldots, t_n) \) satisfies the constraint \(C \) iff \(f_C(t_1, \ldots, t_n) = \text{true} \).
- Typically such functions are represented as **propositional formulas**.
- Solution methods for Boolean constraints exploit the structure of the representation of the constraints as formulas.

Propositional formulas

- Syntax (what are well-formed propositional formulas):
 - Boolean variables (atoms) \(X = \{ x_1, x_2, \ldots \} \)
 - Boolean connectives \(\lor, \land, \neg \)
- The set of (propositional) formulas is the smallest set such that all Boolean variables are formulas and if \(\phi_1 \) and \(\phi_2 \) are formulas, so are \(\neg \phi_1, (\phi_1 \land \phi_2), \text{ and } (\phi_1 \lor \phi_2) \).
 - For example, \((x_1 \lor x_2) \land \neg x_3\) is a formula but \((x_1 \lor x_2) \land \neg x_3\) is not.
- A formula of the form \(x_i \) or \(\neg x_i \) is called a **literal** where \(x_i \) is a Boolean variable.
- We employ usual shorthands:
 - \(\phi_1 \equiv \phi_2 : \neg \phi_1 \lor \phi_2 \)
 - \(\phi_1 \equiv \phi_2 : (\neg \phi_1 \lor \phi_2) \land (\neg \phi_2 \lor \phi_1) \)
 - \(\phi_1 \equiv \phi_2 : (\neg \phi_1 \lor \phi_2) \lor (\phi_1 \land \neg \phi_2) \)

Example: Graph coloring

- Consider the problem of finding a 3-coloring for a graph.
- This can be encoded as a set of Boolean constraints as follows:
 - For each vertex \(v \in V \), introduce three Boolean variables \(v(1), v(2), v(3) \) (intuition: \(v(i) \) is true iff vertex \(v \) is colored with color \(i \)).
 - For each vertex \(v \in V \) introduce the constraints:
 - \(v(1) \lor v(2) \lor v(3) \)
 - \((v(1) \rightarrow \neg v(2)) \land (v(1) \rightarrow \neg v(3)) \land (v(2) \rightarrow \neg v(3)) \)
 - For each edge \((v, u) \in E \) introduce the constraint:
 - \((v(1) \rightarrow \neg u(1)) \land (v(2) \rightarrow \neg u(2)) \land (v(3) \rightarrow \neg u(3)) \)
- Now 3-colorings of a graph \((V, E)\) and solutions to the Boolean constraints (satisfying truth assignments) correspond: vertex \(v \) colored with color \(i \) iff \(v(i) \) assigned true in the solution.

Semantics

- Atomic proposition (Boolean variables) are either true or false and this induces a truth value for any formula as follows.
- A truth assignment \(T \) is mapping from a finite subset \(X' \subset X \) to the set of truth values \(\{ \text{true, false} \} \).
- Consider a truth assignment \(T : X' \rightarrow \{ \text{true, false} \} \) which is appropriate to \(\phi \), i.e., \(X(\phi) \subset X' \) where \(X(\phi) \) be the set of Boolean variables appearing in \(\phi \).
- \(T \models \phi \) (\(T \) satisfies \(\phi \)) is defined inductively as follows:
 - If \(\phi \) is a variable, then \(T \models \phi \) iff \(T(\phi) = \text{true} \).
 - If \(\phi = \neg \phi_1 \), then \(T \models \phi \) iff \(T \notmodels \phi_1 \).
 - If \(\phi = \phi_1 \land \phi_2 \), then \(T \models \phi \) iff \(T \models \phi_1 \) and \(T \models \phi_2 \).
 - If \(\phi = \phi_1 \lor \phi_2 \), then \(T \models \phi \) iff \(T \notmodels \phi_1 \) or \(T \models \phi_2 \).

Example

Let \(T(x_1) = \text{true} \), \(T(x_2) = \text{false} \).
Then \(T \models x_1 \lor x_2 \) but \(T \notmodels (x_1 \lor \neg x_2) \land (\neg x_1 \land x_2) \).
Representing Boolean Functions

A propositional formula \(\phi \) with variables \(x_1, \ldots, x_n \) expresses an \(n \)-ary Boolean function \(f \) if for any \(n \)-tuple of truth values \(t = (t_1, \ldots, t_n) \), \(f(t) = \text{true} \) if \(T \models \phi \) and \(f(t) = \text{false} \) if \(T \not\models \phi \) where \(T(x_i) = t_i, i = 1, \ldots, n \).

Proposition. Any \(n \)-ary Boolean function \(f \) can be expressed as a propositional formula \(\phi_f \) involving variables \(x_1, \ldots, x_n \).

- The idea: model each case of the function having value \text{true} as a disjunction of conjunctions.
- Let \(F \) be the set of all \(n \)-tuples \(t = (t_1, \ldots, t_n) \) with \(f(t) = \text{true} \).
- For each \(t \), let \(D_t \) be a conjunction of literals \(x_i \) if \(t_i = \text{true} \) and \(\neg x_i \) if \(t_i = \text{false} \).
- Let \(\phi_f = \bigvee_{t \in F} D_t \)

Example.

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\phi_f = (\neg x_1 \wedge x_2) \lor (x_1 \wedge \neg x_2) \)

Normal Forms

Many solvers for Boolean constraints require that the constraints are represented in a normal form (typically in conjunctive normal form).

Proposition. Every propositional formula is equivalent to one in conjunctive (disjunctive) normal form.

CNF: \(l_1 \lor \cdots \lor l_m \wedge \cdots \wedge l_{mn} \)

DNF: \(l_1 \land \cdots \land l_m \lor \cdots \lor l_{mn} \)

where each \(l_j \) is a literal (Boolean variable or its negation).

A disjunction \(l_1 \lor \cdots \lor l_m \) is called a clause.

A conjunction \(l_1 \land \cdots \land l_m \) is called an implicant.

Logical Equivalence

Definition. Formulas \(\phi_1 \) and \(\phi_2 \) are equivalent (\(\phi_1 \equiv \phi_2 \)) iff for all truth assignments \(T \) appropriate to both of them, \(T \models \phi_1 \) iff \(T \models \phi_2 \).

Example.

\[
(\phi_1 \lor \phi_2) \equiv (\phi_1 \lor \phi_1) \\
(((\phi_1 \land \phi_2) \land \phi_3) \equiv (\phi_1 \land (\phi_2 \land \phi_3)) \\
\neg \phi \equiv \phi \\
(((\phi_1 \land \phi_2) \lor \phi_3) \equiv (\phi_1 \lor (\phi_2 \lor \phi_3)) \\
\neg(\phi_1 \lor \phi_2) \equiv (\neg \phi_1 \lor \neg \phi_2) \\
(\phi_1 \lor \phi_1) \equiv \phi_1 \\
\]

- Simplified notation:
 \((((x_1 \lor \neg x_3) \lor x_2) \lor (x_2 \lor x_3)) \) is written as \(x_1 \lor \neg x_3 \lor x_2 \lor x_3 \) or \(x_1 \lor \neg x_3 \lor x_2 \lor x_3 \lor x_5 \)

- Let \(\bigvee_{i=1}^n \phi_i \) stands for \(\phi_1 \lor \cdots \lor \phi_n \)

\[\bigwedge_{i=1}^n \phi_i \text{ stands for } \phi_1 \land \cdots \land \phi_n \]

Normal Form Transformations

CNF/DNF transformation:

1. remove \(\iff \) and \(\rightarrow \):
 \[
 \alpha \iff \beta \rightsquigarrow (\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha) \quad (1) \\
 \alpha \rightarrow \beta \rightsquigarrow \neg \alpha \lor \beta \quad (2)
 \]

2. Push negations in front of Boolean variables:
 \[
 \neg \neg \alpha \rightsquigarrow \alpha \quad (3) \\
 \neg (\alpha \lor \beta) \rightsquigarrow \neg \alpha \land \neg \beta \quad (4) \\
 \neg (\alpha \land \beta) \rightsquigarrow \neg \alpha \lor \neg \beta \quad (5)
 \]

3. CNF: move \(\land \) connectors outside \(\lor \) connectors:
 \[
 \alpha \lor (\beta \land \gamma) \rightsquigarrow (\alpha \lor \beta) \land (\alpha \lor \gamma) \quad (6) \\
 (\alpha \land \beta) \lor \gamma \rightsquigarrow (\alpha \lor \beta) \lor (\beta \lor \gamma) \quad (7) \\
 \]

4. DNF: move \(\lor \) connectors outside \(\land \) connectors:
 \[
 \alpha \land (\beta \lor \gamma) \rightsquigarrow (\alpha \land \beta) \lor (\alpha \land \gamma) \quad (8) \\
 (\alpha \lor \beta) \land \gamma \rightsquigarrow (\alpha \lor \gamma) \lor (\beta \lor \gamma) \quad (9)
 \]
Example

Transform \((A \lor B) \rightarrow (B \leftrightarrow C)\) to CNF.

\[
\begin{align*}
(A \lor B) & \rightarrow (B \leftrightarrow C) \quad (1,2) \\
\neg (A \lor B) & \lor (\neg B \lor C) \land (\neg C \lor B) \quad (4) \\
(A \land \neg B) & \lor (\neg B \lor C) \land (\neg C \lor B) \quad (7) \\
\neg A & \lor (\neg B \lor C) \land (\neg C \lor B)) \lor (\neg B \lor (\neg B \lor C) \land (\neg C \lor B)) \quad (6) \\
((\neg A \lor (\neg B \lor C)) \land (\neg A \lor (\neg C \lor B))) \land (\neg B \lor ((\neg B \lor C) \land (\neg C \lor B))) \quad (6) \\
((\neg A \lor (\neg B \lor C)) \land (\neg A \lor (\neg C \lor B))) \land (\neg B \lor (\neg B \lor C) \land (\neg C \lor B)) \\
\end{align*}
\]

- We can assume that normal forms do not have repeated clauses/implicants or repeated literals in clauses/implicants (for example \(\neg B \lor \neg B \lor C \equiv \neg B \lor C\)).
- Normal form can be exponentially bigger than the original formula in the worst case.

Boolean Circuits

- Normal forms are often quite an unnatural way of encoding problems and it is more convenient to use full propositional logic.
- In many applications the encoding is of considerable size and different parts of the encoding have a substantial amount of common substructure.
- Boolean circuits offer an attractive formalism for representing the required Boolean functions where compactness is enhanced by sharing common substructure.

Example. Boolean Circuit

\[
\begin{align*}
v_1 \text{ (and)} & \quad s(v_1) = \text{and}/2 \\
v_2 \text{ (or)} & \quad s(v_2) = \text{or}/3 \\
v_3 \text{ (equiv)} & \quad s(v_3) = \text{equiv}/2 \\
\alpha(v_4) & = \text{false} \\
\end{align*}
\]

\(v_1\) is the output gate of the circuit

\(v_4, v_5, v_6\) are the input gates

\[
\begin{array}{c|c|c}
x_1 & x_2 & \text{equiv}/2 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

For example, typical Boolean functions used in the gates are: \text{and}/n (n-input and function), \text{or}/n, \text{not}, \text{equiv}/2, \text{xor}/2, \ldots.
Boolean Circuits—Semantics

- For a circuit a truth assignment \(T : X(C) \rightarrow \{ \text{true}, \text{false} \} \) gives a truth assignment to each gate in \(X(C) \) where \(X(C) \) is the set of input gates of \(C \).
- This defines a truth value \(T(g) \) for each gate \(g \) inductively when the gates are ordered topologically in a sequence so that no gate appears in the sequence before its input gates (this is always possible because the circuit is acyclic):
 - If \(g \in X(C) \), then the truth assignment \(T(g) \) gives the truth value.
 - Otherwise \(T(g) = f(T(g_1), \ldots, T(g_n)) \) where \((g_1, g), \ldots, (g_n, g)\) are the edges entering \(g \) and \(f \) is the Boolean function \(s(g) \) associated to \(g \).

Example. For the previous example circuit \(C \), \(X(C) = \{ v_4, v_5, v_6 \} \).
For a truth assignment \(T(v_4) = T(v_5) = T(v_6) = \text{false} \),
\(T(v_3) = \text{equiv}(\text{false, false}) = \text{true}, T(v_2) = \text{false}, T(v_1) = \text{false} \).

Circuit Satisfiability Problem

- An interesting computational (search) problem related to circuits is the circuit satisfiability problem.
- Given a Boolean circuit \((V, E, s, \alpha)\) we say a truth assignment \(T \) satisfies the circuit if it satisfies the constraints \(\alpha \), i.e., for each gate \(g \) for which \(\alpha \) gives a truth value, \(\alpha(g) = T(g) \) holds.
- **CIRCUIT SAT** problem: Given a Boolean circuit find a truth assignment \(T \) that satisfies the circuit.

Example. Consider the circuit with constraints
\(\alpha(v_4) = \text{false}, \alpha(v_1) = \text{true} \).
This circuit has a satisfying truth assignment
\(T(v_4) = \text{false}, T(v_5) = T(v_6) = \text{true} \).
If the constraints are \(\alpha(v_2) = \text{false}, \alpha(v_1) = \text{true} \), the circuit is unsatisfiable.

Boolean Circuits vs. Propositional Formulas

- For each propositional formulae \(\phi \), there is a corresponding Boolean circuit \(C_\phi \) such that for any \(T \) appropriate for both, \(T(g_b) = \text{true} \) iff \(T \models \phi \) for an output gate \(g_b \) of \(C_\phi \).

Idea: just introduce a new gate for each subexpression.

\[
\begin{align*}
(a \lor b) \land (\neg a \lor b) \\
(a \lor \neg b) \land (\neg a \lor \neg b)
\end{align*}
\]

- For each Boolean circuit \(C \), there is a corresponding formula \(\phi_C \).
- Notice that Boolean circuits allow shared subexpressions but formulas do not.
For instance, in the circuit above gates \(a, b, c, d \).

Circuits Compute Boolean Functions

- A Boolean circuit with output gate \(g \) and variables \(x_1, \ldots, x_n \) computes an \(n \)-ary Boolean function \(f \) if for any \(n \)-tuple of truth values \(t = (t_1, \ldots, t_n) \), \(f(t) = T(g) \) where \(T(x_i) = t_i \), \(i = 1, \ldots, n \).
- Any \(n \)-ary Boolean function \(f \) can be computed by a Boolean circuit involving variables \(x_1, \ldots, x_n \).
- Not every Boolean function can be computed using a concise circuit.

Theorem

For any \(n \geq 2 \) there is an \(n \)-ary Boolean function \(f \) such that no Boolean circuit with \(\frac{2^n}{2n} \) or fewer gates can compute it.
Boolean Circuits as Equation Systems

A Boolean circuit can be written as a system of equations.

\[
\begin{align*}
 v &= \text{and}(e, f, g, h) \\
 e &= \text{or}(a, b) \\
 f &= \text{or}(b, c) \\
 g &= \text{or}(a, d) \\
 h &= \text{or}(c, d) \\
 c &= \text{not}(a) \\
 d &= \text{not}(b)
\end{align*}
\]

Example

Binary adder. Given input bits \(a, b, c\) compute output bits \(o_1, o_2\) which give the sum of \(a, b,\) and \(c\) in binary.

As a formula:

\[
\begin{align*}
 o_1 &= (a \oplus b) \oplus c \\
 o_2 &= (a \wedge b) \lor (c \wedge (a \oplus b))
\end{align*}
\]

As a circuit:

\[
\begin{align*}
 o_1 &= \text{xor}(x, c) \\
 o_2 &= \text{or}(l, r) \\
 l &= \text{and}(a, b) \\
 r &= \text{and}(c, x) \\
 x &= \text{xor}(a, b)
\end{align*}
\]

Boolean Modelling

- Propositional formulas/Boolean circuits offer a natural way of modelling many interesting Boolean functions.
- Example. IF-THEN-ELSE \(\text{ite}(a, b, c)\) (if \(a\) then \(b\) else \(c\)).

As a formula:

\[
\text{ite}(a, b, c) \equiv (a \wedge b) \lor (\neg a \wedge c)
\]

As a circuit:

\[
\begin{align*}
 i_1 &= \text{and}(a, b) \\
 i_2 &= \text{and}(a_1, c) \\
 a_1 &= \text{not}(a)
\end{align*}
\]

- Given gates \(a, b, c\), \(\text{ite}(a, b, c)\) can be thought as a shorthand for a subcircuit given above.
- In the \texttt{bczchaff} tool used in the course \(\text{ite}(a, b, c)\) is provided as a primitive gate functions.

Encoding Problems Using Circuits

- Circuits can be used to encode problems in a structured way.
- Example. Given three bits \(a, b, c\) find their values such that if at least two of them are ones then either \(a\) or \(b\) is one else \(a\) or \(c\) is one.

- We use IF-THEN-ELSE and adder circuits to encode this as a CIRCUIT SAT problem as follows:

\[
\begin{align*}
 p &= \text{ite}(o_2, x, p_1) \\
 p_1 &= \text{or}(a, c) \\
 x &= \text{xor}(a, b)
\end{align*}
\]

- Now each satisfying truth assignment for the circuit with \(\alpha(p) = \text{true}\) gives a solution to the problem.
Example. Reachability

Given a graph $G = (\{1, \ldots, n\}, E)$, constructs a circuit $R(G)$ such that $R(G)$ is satisfiable iff there is a path from 1 to n in G.

- The gates of $R(G)$ are of the form
 g_{ijk} with $1 \leq i, j \leq n$ and $0 \leq k \leq n$
 h_{ijk} with $1 \leq i, j, k \leq n$

- g_{ijk} is true: there is a path in G from i to j not using any intermediate node bigger than k.
- h_{ijk} is true: there is a path in G from i to j not using any intermediate node bigger than k but using k.

Example—cont’d

$R(G)$ is the following circuit:

- For $k = 0$, g_{ij0} is an input gate.
- For $k = 1, 2, \ldots, n$:
 $h_{ijk} = \text{and}(g_{ik(k-1)}, g_{kj(k-1)})$
 $g_{ijk} = \text{or}(g_{ij(k-1)}, h_{ijk})$

- g_{1nn} is the output gate of $R(G)$.

Constraints α:
- For the output gate: $\alpha(g_{1nn}) = \text{true}$
- For the input gates: $\alpha(g_{ij0}) = \text{true}$ if $i = j$ or (i, j) is an edge in G
 else $\alpha(g_{ij0}) = \text{false}$.

Because of the constraints α on input gates there is at most one possible truth assignment T.

It can be shown by induction on $k = 0, 1, \ldots, n$ that in this assignment the truth values of the gates correspond to their given intuitive readings.

From this it follows:
$R(G)$ is satisfiable iff $T(g_{1nn}) = \text{true}$ in the truth assignment iff there is a path from 1 to n in G without any intermediate nodes bigger than n iff there is a path from 1 to n in G.

Example—cont’d

Consider now a more challenging (search) problem.

- Given a graph $G = (\{1, \ldots, n\}, E)$ and a set of edges $E' \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$, is there a subset $S \subseteq E'$ such that there is a path from 1 to n in $G' = (\{1, \ldots, n\}, E \cup S)$ but not from 1 to $n-1$.

- To solve this problem we can use the circuit $R(G)$ and modify it as follows:
 - remove constraints $\alpha(g_{ij0}) = t$ for each edge $(i, j) \in E'$
 - add the constraint $\alpha(g_{1n1n1}n) = false$

Now the modified $R(G)$ is satisfiable iff there is a set of edges S such that there is a path from 1 to n but not from 1 to $n-1$.

Moreover, the set of edges S is given by the gates g_{ij0} true in a satisfying truth assignment where $(i, j) \in E'$.
From Circuits to CNF

Translating Boolean Circuits to an equivalent CNF formula can lead to exponential blow-up in the size of the formula.

Often exact equivalence is not necessary but auxiliary variables can be used as long as at least satisfiability is preserved.

Then a linear size CNF representation can be obtained using co-called Tseitin’s translation where given a Boolean circuit C the corresponding CNF formula is obtained as follows:

- a new variable is introduced to each gate of the circuit,
- the set of clauses in the normal form consists of the gate equation is written in a clausal form for each intermediate and output gate and the corresponding literal for each gate g with a constraint \(\alpha(g) = t \).

This transformation preserves satisfiability and even truth assignments in the following sense:

If \(C \) is a Boolean circuit and \(\Sigma \) its Tseitin translation, then for every truth assignment \(T \) of \(C \) there is a satisfying truth assignment \(T' \) of \(\Sigma \) which agrees with \(T \) and vice versa.

Gate equations for non-input gates:

\[v_1 \leftrightarrow (v_2 \wedge v_3) \]

\[v_2 \leftrightarrow (v_4 \vee v_5 \vee v_6) \]

\[v_3 \leftrightarrow (v_5 \leftrightarrow v_6) \]

In CNF:

\[(\neg v_1 \vee v_2) \wedge (\neg v_1 \vee v_3) \wedge (v_1 \vee \neg v_2 \vee \neg v_3) \wedge \]

\[(v_2 \vee \neg v_4) \wedge (v_2 \vee \neg v_5) \wedge (v_2 \vee \neg v_6) \wedge (\neg v_2 \vee v_4 \vee v_5 \vee v_6) \wedge \]

\[(v_3 \vee v_5 \vee v_6) \wedge (v_3 \vee \neg v_5 \vee \neg v_6) \wedge (v_3 \vee v_5 \vee \neg v_6) \wedge (\neg v_3 \vee v_5 \vee \neg v_6) \wedge (\neg v_3 \vee \neg v_5 \vee \neg v_6) \wedge \]

\[(\neg v_4) \text{ [for the constraint } \alpha(v_4) = \text{false]} \]