Search Problems and Algorithms
T-79.4201

Ilkka Niemelä & Pekka Orponen
Laboratory for Theoretical Computer Science, TKK

Spring 2006

Why this course?

▶ With the increase in computing power, continually new computation-intensive application areas emerge (e.g. various types of planning & scheduling, data mining, bioinformatics, . . .)

▶ Many immediate problems in these areas are both computationally demanding & mathematically weakly structured (“Here is my messy objective function. Find a near-optimal solution to it – quickly!”)

▶ In such “quick-and-dirty” settings a search problem formulation is often the most effective (if not the only) approach.

▶ Moreover, the design and analysis of search algorithms is a fascinating research topic in itself!

T-79.4201 Search Problems and Algorithms (4 ECTS)

“At introduction to the fundamental concepts, techniques and tools used in dealing with large, weakly structured combinatorial search spaces.”

Required course in the new A2-level Study Module in TCS.

Practical arrangements

Lectures: Thu 14-16 TB353, alternately by Ilkka Niemelä and Pekka Orponen

Tutorials: Fhu 16–18 TB353, Antti Rusanen

Registration: by TOPI

Prerequisites: Basic knowledge of problem representations and logic, facility in programming, data structures and algorithms

Requirements: Examination (21 Dec) and three small programming assignments (announced 5 Oct, 19 Oct, 9 Nov, each due in two weeks)

Course home page: http://www.tcs.hut.fi/Studies/T-79.4201/

Grading scheme: Details TBA, programming assignments pass/fail
Material

No existing textbook: lectures cover a wide range of material from several textbooks & current scientific literature.

Course problems based on lecture slides; updated on the course web site each week after lecture.

Examples of reference material:


1 Overview of the Course

1.1 A Motivating Example

Twelve slightly different types of billets, numbered 1 . . . 12, arrive for processing at a factory workshop. The workshop has four machines, numbered I . . . IV, and four workers, named A . . . D, who have different qualifications for working on the billets. To make things more complicated, there are also four specialised tools, numbered i . . . iv, that are needed for processing the various billets. The requirements of machines, tools, and workers for the billets are indicated in the following table:

<table>
<thead>
<tr>
<th>Machine</th>
<th>Tool</th>
<th>Worker</th>
</tr>
</thead>
<tbody>
<tr>
<td>I: 1 5 9</td>
<td>i: 1 2 3</td>
<td>A: 1 7 8</td>
</tr>
<tr>
<td>II: 2 6 10</td>
<td>ii: 4 9 10</td>
<td>B: 2 3 4</td>
</tr>
<tr>
<td>III: 3 7 11</td>
<td>iii: 5 11 12</td>
<td>C: 5 6 12</td>
</tr>
<tr>
<td>IV: 4 8 12</td>
<td>iv: 6 7 8</td>
<td>D: 9 10 11</td>
</tr>
</tbody>
</table>

Let's say processing each billet by a combination of the appropriate machine, tool & worker requires 1 hour. Any given machine, tool, or worker can only work on one billet at a time. Since there are 12 billets and 4 machines (as well as tools & workers), processing all the billets requires at least 3 hours. Can it be done in this minimal time?

How would you approach the preceding problem:

(a) By hand? (Design an appropriate schedule!)

(b) By computer, assuming that an arbitrary list of requirements such as above would be given as input? (The numbers of machines, tools, and workers do not need to be the same: this is just a peculiarity of the present example.)

Think about this problem; it will be discussed at next week's tutorial. You do not need to write any program code, but try to think about how you would approach task (b) of minimising the completion time for a given list of requirements.
Lecture 2: Combinatorial search and optimisation problems

I.N. 21 Sep

Common mathematical patterns in combinatorial search and optimisation: Satisfiability, Clique, Graph Colouring, Traveling Salesman, Set Cover.
Different types of problems and reductions between them.

Lecture 3: Search spaces and objective functions. Complete search methods

P.O. 28 Sep


Lecture 4: Local search techniques

P.O. 5 Oct

Search spaces as “fitness landscapes”. Neighbourhoods and local search. Lin-Kernighan search for TSP. Simulated annealing, Tabu search. Record-to-Record Travel. Local search methods for satisfiability. Instructions for the 1st programming assignment.

Lecture 5: Constraint satisfaction: formalisms and modelling

I.N. 12 Oct

General representation of search problems as systems of constraints (e.g. propositional formulas)

$$\left( x_1 \lor \overline{x}_2 \lor x_3 \right) \land \left( \overline{x}_1 \lor x_2 \lor \overline{x}_4 \right) \land \left( x_2 \lor \overline{x}_3 \lor x_4 \right)$$

Case studies of translations.
Lecture 6: Constraint satisfaction: algorithms
I.N. 19 Oct


Lecture 7: Constraint satisfaction, linear & integer programming
I.N. 2 Nov

General representation of problems as systems of linear equations over reals and integers.

\[
\begin{align*}
\min & \quad 2x_2 + x_4 + 5x_7 \\
& x_1 + x_2 + x_3 + x_4 = 4 \\
& x_1 + x_5 = 2 \\
& x_3 + x_6 = 3 \\
& 3x_2 + x_3 + x_7 = 6 \\
& x_1, \ldots, x_7 \geq 0
\end{align*}
\]

Lecture 8: Linear and integer programming: modelling and tools
I.N. 9 Nov

Case studies of problem translations. Software packages. Instructions for the 3rd programming assignment.

Lecture 9: Linear and integer programming: algorithms
I.N. 16 Nov

Branch & Bound methods. Overview of the simplex algorithm.
Lecture 9: Genetic algorithms  
P.O. 23 Nov  
Genetic algorithms. Evolution strategies.

Lecture 10: Novel methods  
P.O. 30 Nov  

Lecture 11: Complexity of search  
P.O. 7 Dec  
The “No Free Lunch” theorem. Properties of search runtime distributions. Phase transitions in local search.