T-79.4201 Search Problems and Algorithms Tutorial 12 Problems

- 1. One corollary of the NFL theorem is that the expected value of any performance measure $\Phi(d_m^y)$ is independent of the optimisation algorithm *a* used, when the underlying objective function *f* is chosen uniformly at random from the space $\mathcal{Y}^{\mathcal{X}}$. To illustrate this result, compute explicitly the expected maximum value (i.e. $E[\max\{d^y(1),\ldots,d^y(m)\}]$) encountered in:
 - (a) a local search of length m = 2 in the space of binary strings of length 2 $(\mathcal{X} = \{0, 1\}^2)$, when the range of the objective functions is $\mathcal{Y} = \{0, 1\}$;
 - (b) a local search of length m = 3 in the space of binary strings of length 3 $(\mathcal{X} = \{0, 1\}^3)$, when the range of the objective functions is $\mathcal{Y} = \{0, 1, 2\}$.

(You do not need to verify that the expected maxima really are algorithm independent.)

- 2. Consider the following k-Set Splitting problem: Given a collection \mathcal{C} of k-element subsets of a finite set S, is there a subset $S' \subseteq S$ such that no $C \in \mathcal{C}$ is contained in either S' or S S' (i.e., S' "splits" all the sets in \mathcal{C} in two pieces). The problem is NP-complete for $k \geq 3$. Make an educated guess concerning the location of "hard instances" for this problem.
- 3. Consider the problem for which you programmed a local search method in your first programming assignment. Can you identify a parameter β in the problem analogous to the clauses-to-variables ratio α of the Satisfiability problem? At which values of β would you guess that your problem would be most difficult to solve? [*Highly optional:* Make some relevant computer experiments using your existing local-search code, e.g.: (a) plot the time evolution of the problem's objective function for different types of input instances (if there is a lot of variance in the time series, take averages over several runs with different random number sequences); (b) try to experimentally determine the region of "hard instances" for the problem.]